Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the function by completing the square.

{:[g(x)=x^(2)+15 x+54],[g(x)=◻(x+◻)^(2)+◻]:}

Rewrite the function by completing the square.\newlineg(x)=x2+15x+54g(x)=(x+)2+ \begin{array}{l} g(x)=x^{2}+15 x+54 \\ g(x)=\square(x+\square)^{2}+\square \end{array}

Full solution

Q. Rewrite the function by completing the square.\newlineg(x)=x2+15x+54g(x)=(x+)2+ \begin{array}{l} g(x)=x^{2}+15 x+54 \\ g(x)=\square(x+\square)^{2}+\square \end{array}
  1. Identify coefficients: Identify the quadratic and linear coefficients in the function g(x)g(x).\newlineThe quadratic coefficient is the coefficient of x2x^2, which is 11. The linear coefficient is the coefficient of xx, which is 1515.
  2. Complete the square: Divide the linear coefficient by 22 and square the result to find the number to complete the square.\newline(152)2=7.52=56.25(\frac{15}{2})^2 = 7.5^2 = 56.25
  3. Add and subtract: Add and subtract the number found in Step 22 inside the function to complete the square.\newlineg(x) = x2+15x+56.2556.25+54x^2 + 15x + 56.25 - 56.25 + 54
  4. Group and factor: Group the perfect square trinomial and the constants. \newlineg(x)=(x2+15x+56.25)56.25+54g(x) = (x^2 + 15x + 56.25) - 56.25 + 54
  5. Combine constants: Factor the perfect square trinomial.\newlineg(x) = (x+7.5)256.25+54(x + 7.5)^2 - 56.25 + 54
  6. Combine constants: Factor the perfect square trinomial.\newlineg(x) = (x + 77.55)^22 - 5656.2525 + 5454Combine the constants to simplify the function.\newlineg(x) = (x + 77.55)^22 - 22.2525