Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the function by completing the square.

{:[f(x)=2x^(2)+3x-2],[f(x)=◻(x+◻)^(2)+◻]:}

Rewrite the function by completing the square.\newlinef(x)=2x2+3x2f(x)=(x+)2+ \begin{array}{l} f(x)=2 x^{2}+3 x-2 \\ f(x)=\square(x+\square)^{2}+\square \end{array}

Full solution

Q. Rewrite the function by completing the square.\newlinef(x)=2x2+3x2f(x)=(x+)2+ \begin{array}{l} f(x)=2 x^{2}+3 x-2 \\ f(x)=\square(x+\square)^{2}+\square \end{array}
  1. Divide and factor out leading coefficient: Divide the quadratic and linear coefficients by the leading coefficient if it is not 11.\newlineSince the leading coefficient of f(x)=2x2+3x2f(x) = 2x^2 + 3x - 2 is 22, we need to factor it out from the x2x^2 and xx terms.\newlinef(x)=2(x2+32x)2f(x) = 2(x^2 + \frac{3}{2}x) - 2
  2. Complete the square: Find the value to complete the square.\newlineTo complete the square for the expression x2+32xx^2 + \frac{3}{2}x, we need to add and subtract the square of half the coefficient of xx, which is (34)2=916\left(\frac{3}{4}\right)^2 = \frac{9}{16}.\newlinef(x)=2(x2+32x+916916)2f(x) = 2\left(x^2 + \frac{3}{2}x + \frac{9}{16} - \frac{9}{16}\right) - 2
  3. Rewrite with perfect square trinomial: Rewrite the function with a perfect square trinomial.\newlineAdd 916\frac{9}{16} inside the parentheses and subtract 2×9162 \times \frac{9}{16} (since we factored out a 22 at the beginning) outside the parentheses to keep the equation balanced.\newlinef(x)=2((x2+32x+916)916)2f(x) = 2\left(\left(x^2 + \frac{3}{2}x + \frac{9}{16}\right) - \frac{9}{16}\right) - 2\newlinef(x)=2((x+34)2916)2f(x) = 2\left(\left(x + \frac{3}{4}\right)^2 - \frac{9}{16}\right) - 2
  4. Distribute and simplify: Distribute the 22 and simplify the constant terms.f(x)=2(x+34)229162f(x) = 2(x + \frac{3}{4})^2 - 2 \cdot \frac{9}{16} - 2f(x)=2(x+34)298168f(x) = 2(x + \frac{3}{4})^2 - \frac{9}{8} - \frac{16}{8}f(x)=2(x+34)2258f(x) = 2(x + \frac{3}{4})^2 - \frac{25}{8}