Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Polynomial function
g
g
g
is defined as
g
(
x
)
=
x
3
−
a
x
2
−
17
x
+
12
g(x)=x^{3}-a x^{2}-17 x+12
g
(
x
)
=
x
3
−
a
x
2
−
17
x
+
12
, where
a
a
a
is a constant. If
x
+
4
x+4
x
+
4
is a factor of the polynomial, then what is the value of
a
a
a
?
View step-by-step help
Home
Math Problems
Calculus
Find derivatives using the chain rule II
Full solution
Q.
Polynomial function
g
g
g
is defined as
g
(
x
)
=
x
3
−
a
x
2
−
17
x
+
12
g(x)=x^{3}-a x^{2}-17 x+12
g
(
x
)
=
x
3
−
a
x
2
−
17
x
+
12
, where
a
a
a
is a constant. If
x
+
4
x+4
x
+
4
is a factor of the polynomial, then what is the value of
a
a
a
?
Apply Factor Theorem:
Since
x
+
4
x+4
x
+
4
is a factor of the polynomial
g
(
x
)
g(x)
g
(
x
)
, we can use the Factor Theorem which states that if
x
+
4
x+4
x
+
4
is a factor, then
g
(
−
4
)
=
0
g(-4)=0
g
(
−
4
)
=
0
.
Substitute
x
=
−
4
x = -4
x
=
−
4
:
Substitute
x
=
−
4
x = -4
x
=
−
4
into the polynomial
g
(
x
)
g(x)
g
(
x
)
to find the value of
a
a
a
.
\newline
g
(
−
4
)
=
(
−
4
)
3
−
a
(
−
4
)
2
−
17
(
−
4
)
+
12
g(-4) = (-4)^3 - a(-4)^2 - 17(-4) + 12
g
(
−
4
)
=
(
−
4
)
3
−
a
(
−
4
)
2
−
17
(
−
4
)
+
12
Calculate
g
(
−
4
)
g(-4)
g
(
−
4
)
:
Calculate the value of
g
(
−
4
)
g(-4)
g
(
−
4
)
.
g
(
−
4
)
=
(
−
64
)
−
a
(
16
)
+
68
+
12
g(-4) = (-64) - a(16) + 68 + 12
g
(
−
4
)
=
(
−
64
)
−
a
(
16
)
+
68
+
12
g
(
−
4
)
=
−
64
−
16
a
+
68
+
12
g(-4) = -64 - 16a + 68 + 12
g
(
−
4
)
=
−
64
−
16
a
+
68
+
12
g
(
−
4
)
=
4
−
16
a
g(-4) = 4 - 16a
g
(
−
4
)
=
4
−
16
a
Set
g
(
−
4
)
g(-4)
g
(
−
4
)
equal to
0
0
0
:
Set
g
(
−
4
)
g(-4)
g
(
−
4
)
equal to
0
0
0
and solve for
a
a
a
.
0
=
4
−
16
a
0 = 4 - 16a
0
=
4
−
16
a
Add
16
a
16a
16
a
to both sides:
Add
16
a
16a
16
a
to both sides of the equation to isolate the term with
a
a
a
.
16
a
=
4
16a = 4
16
a
=
4
Divide both sides:
Divide both sides by
16
16
16
to solve for
a
a
a
.
\newline
a
=
4
16
a = \frac{4}{16}
a
=
16
4
\newline
a
=
1
4
a = \frac{1}{4}
a
=
4
1
More problems from Find derivatives using the chain rule II
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
cos
(
x
)
f(x) = \cos(x)
f
(
x
)
=
cos
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 10 months ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
(
x
)
f(x) = \tan(x)
f
(
x
)
=
tan
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
f(x) = e^x
f
(
x
)
=
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
ln
(
x
)
f(x) = \ln(x)
f
(
x
)
=
ln
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
−
1
x
f(x) = \tan^{-1}{x}
f
(
x
)
=
tan
−
1
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
e
x
f(x) = x e^x
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
x
f(x) = \frac{e^x}{x}
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
(
x
+
1
)
f(x) = e^{(x + 1)}
f
(
x
)
=
e
(
x
+
1
)
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 10 months ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
g
(
x
)
g(x)
g
(
x
)
.
\newline
g
(
x
)
=
ln
(
2
x
)
g(x) = \ln(2x)
g
(
x
)
=
ln
(
2
x
)
\newline
g
′
(
x
)
=
g^{\prime}(x) =
g
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant