Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If the equation 
y=2(1.5)^(x) is graphed in the 
xy-plane, what are the coordinates of its 
y-intercept?
Choose 1 answer:
(A) 
(0,0)
(B) 
(0,1.5)
(c) 
(0,2)
(D) 
(0,3)

If the equation y=2(1.5)x y=2(1.5)^{x} is graphed in the xy x y -plane, what are the coordinates of its y y -intercept?\newlineChoose 11 answer:\newline(A) (0,0) (0,0) \newline(B) (0,1.5) (0,1.5) \newline(C) (0,2) (0,2) \newline(D) (0,3) (0,3)

Full solution

Q. If the equation y=2(1.5)x y=2(1.5)^{x} is graphed in the xy x y -plane, what are the coordinates of its y y -intercept?\newlineChoose 11 answer:\newline(A) (0,0) (0,0) \newline(B) (0,1.5) (0,1.5) \newline(C) (0,2) (0,2) \newline(D) (0,3) (0,3)
  1. Identify y-intercept: Identify the y-intercept of the graph.\newlineThe y-intercept occurs where the graph crosses the y-axis, which is when x=0x=0.
  2. Substitute x=0x=0: Substitute x=0x=0 into the equation to find the y-coordinate of the y-intercept.\newliney=2(1.5)(0)y = 2(1.5)^{(0)}
  3. Calculate y: Calculate the value of y when x=0x=0.\newliney=2(1)y = 2(1) because any number raised to the power of 00 is 11.\newliney=2×1y = 2 \times 1\newliney=2y = 2
  4. Combine coordinates: Combine the value of xx and yy to get the coordinates of the y-intercept.\newlineThe coordinates of the y-intercept are (0,y)(0, y).\newlineSince y=2y=2 when x=0x=0, the coordinates are (0,2)(0, 2).

More problems from Find properties of a parabola from equations in general form