Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Factor completely.

5x^(4)-20x^(3)+20x^(2)=

Factor completely.\newline5x420x3+20x2= 5 x^{4}-20 x^{3}+20 x^{2}=

Full solution

Q. Factor completely.\newline5x420x3+20x2= 5 x^{4}-20 x^{3}+20 x^{2}=
  1. Identify GCF: Identify the greatest common factor (GCF) of the terms.\newlineThe GCF of 5x45x^4, 20x320x^3, and 20x220x^2 is 5x25x^2.
  2. Factor out GCF: Factor out the GCF from each term.\newline5x420x3+20x2=5x2(x24x+4)5x^4 - 20x^3 + 20x^2 = 5x^2(x^2 - 4x + 4)
  3. Recognize quadratic trinomial: Recognize that the expression inside the parentheses is a quadratic trinomial. We need to determine if the quadratic trinomial (x24x+4)(x^2 - 4x + 4) can be factored further.
  4. Factor quadratic trinomial: Factor the quadratic trinomial.\newlineThe quadratic trinomial x24x+4x^2 - 4x + 4 is a perfect square trinomial because (2)2=4(2)^2 = 4 and 2×2=42\times2 = 4.\newlineIt factors into (x2)2(x - 2)^2.
  5. Write completely factored form: Write the completely factored form of the original expression.\newline5x420x3+20x2=5x2(x2)25x^4 - 20x^3 + 20x^2 = 5x^2(x - 2)^2

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago