Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A circle has a circumference of 
4pi feet (ft). An arc, 
x, in this circle has a central angle of 
240^(@). What is the length of 
x ?
Choose 1 answer:
(A) 
(4pi)/(3)ft
(B) 
(8pi)/(3)ft
(C) 
480ft
(D) 
960ft

A circle has a circumference of 4π 4 \pi feet (ft). An arc, x x , in this circle has a central angle of 240 240^{\circ} . What is the length of x x ?\newlineChoose 11 answer:\newline(A) 4π3ft \frac{4 \pi}{3} \mathrm{ft} \newline(B) 8π3ft \frac{8 \pi}{3} \mathrm{ft} \newline(C) 480ft 480 \mathrm{ft} \newline(D) 960ft 960 \mathrm{ft}

Full solution

Q. A circle has a circumference of 4π 4 \pi feet (ft). An arc, x x , in this circle has a central angle of 240 240^{\circ} . What is the length of x x ?\newlineChoose 11 answer:\newline(A) 4π3ft \frac{4 \pi}{3} \mathrm{ft} \newline(B) 8π3ft \frac{8 \pi}{3} \mathrm{ft} \newline(C) 480ft 480 \mathrm{ft} \newline(D) 960ft 960 \mathrm{ft}
  1. Circumference Calculation: The circumference CC of a circle is related to its radius rr by the formula C=2πrC = 2\pi r. We are given that the circumference is 4π4\pi ft, so we can solve for rr:\newline4π=2πr4\pi = 2\pi r\newliner=2r = 2 ft
  2. Central Angle Conversion: The length of an arc ss in a circle is given by the formula s=rθs = r\theta, where θ\theta is the central angle in radians. To use this formula, we need to convert the central angle from degrees to radians. The conversion factor is π\pi radians = 180180^\circ, so:\newlineθ=240×(π/180)=(4/3)π\theta = 240^\circ \times (\pi/180^\circ) = (4/3)\pi radians
  3. Arc Length Calculation: Now we can calculate the length of the arc xx using the radius we found in step 11 and the angle in radians from step 22: s=rθ=2ft×(43)π=(83)πfts = r\theta = 2 \, \text{ft} \times \left(\frac{4}{3}\right)\pi = \left(\frac{8}{3}\right)\pi \, \text{ft}

More problems from Scale drawings: word problems