Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

9x=3339^x=333\newlineFind xx.

Full solution

Q. 9x=3339^x=333\newlineFind xx.
  1. Calculate logarithm to isolate xx: Calculate the logarithm of both sides to isolate xx. Using log base 1010, log(9x)=log(333)\log(9^x) = \log(333). Using the power rule of logarithms, xlog(9)=log(333)x \cdot \log(9) = \log(333).
  2. Calculate logs using calculator: Calculate log(9)\log(9) and log(333)\log(333) using a calculator.\newlinelog(9)0.9542\log(9) \approx 0.9542, log(333)2.5224\log(333) \approx 2.5224.
  3. Solve for x by dividing logs: Solve for x by dividing the logs.\newlinex=log(333)log(9)x = \frac{\log(333)}{\log(9)}.\newlinex2.52240.95422.64x \approx \frac{2.5224}{0.9542} \approx 2.64.

More problems from Solve equations with variable exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago