Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

4x-y=8

y=3x-1
If 
(x,y) satisfies the given system of equations, what is the value of 
y ?
Choose 1 answer:
(A) 7
(B) 9
(C) 20
(D) 26

4xy=8 4 x-y=8 \newliney=3x1 y=3 x-1 \newlineIf (x,y) (x, y) satisfies the given system of equations, what is the value of y y ?\newlineChoose 11 answer:\newline(A) 77\newline(B) 99\newline(C) 20 \mathbf{2 0} \newline(D) 2626

Full solution

Q. 4xy=8 4 x-y=8 \newliney=3x1 y=3 x-1 \newlineIf (x,y) (x, y) satisfies the given system of equations, what is the value of y y ?\newlineChoose 11 answer:\newline(A) 77\newline(B) 99\newline(C) 20 \mathbf{2 0} \newline(D) 2626
  1. Write Equations: Write down the given system of equations.\newlineThe system of equations is:\newline4xy=84x - y = 8\newliney=3x1y = 3x - 1
  2. Substitute and Simplify: Substitute the expression for yy from the second equation into the first equation.\newlineSince y=3x1y = 3x - 1, we can replace yy in the first equation with 3x13x - 1.\newline4x(3x1)=84x - (3x - 1) = 8
  3. Solve for x: Solve for x.\newlineDistribute the negative sign in the first equation and combine like terms.\newline4x3x+1=84x - 3x + 1 = 8\newlinex+1=8x + 1 = 8\newlineSubtract 11 from both sides.\newlinex=81x = 8 - 1\newlinex=7x = 7
  4. Substitute for y: Substitute the value of xx back into the second equation to find yy. We know that y=3x1y = 3x - 1, so we substitute x=7x = 7. y=3(7)1y = 3(7) - 1 y=211y = 21 - 1 y=20y = 20

More problems from Solve linear equations: mixed review