Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

4e^((7pi)/(4)i)i+2e^((3pi)/(2)i)

4e7π4ii+2e3π2i 4 e^{\frac{7 \pi}{4} i} i+2 e^{\frac{3 \pi}{2} i}

Full solution

Q. 4e7π4ii+2e3π2i 4 e^{\frac{7 \pi}{4} i} i+2 e^{\frac{3 \pi}{2} i}
  1. Simplify e7π4ie^{\frac{7\pi}{4}i}: Step 11: Simplify e(7π4)ie^{\left(\frac{7\pi}{4}\right)i} Using Euler's formula, eiθ=cos(θ)+isin(θ)e^{i\theta} = \cos(\theta) + i\sin(\theta), e(7π4)i=cos(7π4)+isin(7π4)=cos(π4)+isin(π4)//sincecosandsinareperiodicwithperiod2π=22i22e^{\left(\frac{7\pi}{4}\right)i} = \cos\left(\frac{7\pi}{4}\right) + i\sin\left(\frac{7\pi}{4}\right) = \cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) // since \cos and \sin are periodic with period 2\pi = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}
  2. Calculate 4e(7π/4)i4e^{(7\pi/4)i}: Step 22: Calculate 4e((7π)/(4)i)i4e^{((7\pi)/(4)i)i}\newlineMultiply the result from Step 11 by 44,\newline4(2/2i2/2)=222i24(\sqrt{2}/2 - i\sqrt{2}/2) = 2\sqrt{2} - 2i\sqrt{2}\newlineNow, multiply by ii,\newline(222i2)i=22i22(2\sqrt{2} - 2i\sqrt{2})i = -2\sqrt{2}i - 2\sqrt{2}
  3. Simplify e3π2ie^{\frac{3\pi}{2}i}: Step 33: Simplify e(3π2)ie^{\left(\frac{3\pi}{2}\right)i}\newlineUsing Euler's formula again,\newlinee(3π2)i=cos(3π2)+isin(3π2)e^{\left(\frac{3\pi}{2}\right)i} = \cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right)\newline=0i= 0 - i\newline=i= -i
  4. Calculate 2e(3π/2)i2e^{(3\pi/2)i}: Step 44: Calculate 2e(3π2)i2e^{\left(\frac{3\pi}{2}\right)i}\newlineMultiply the result from Step 33 by 22,\newline2(i)=2i2(-i) = -2i
  5. Add results from Step 22 and Step 44: Step 55: Add the results from Step 22 and Step 44\newline(22i22)+(2i) (-2\sqrt{2}i - 2\sqrt{2}) + (-2i) \newline= 224i2 -2\sqrt{2} - 4i\sqrt{2}

More problems from Find derivatives of using multiple formulae