Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the  expression 4a^(-3)b^(3)*2a^(2)b^(-1)*4a^(2)b^(2)

Simplify the expression : 4a3b32a2b14a2b2 4 a^{-3} b^{3} \cdot 2 a^{2} b^{-1} \cdot 4 a^{2} b^{2}

Full solution

Q. Simplify the expression : 4a3b32a2b14a2b2 4 a^{-3} b^{3} \cdot 2 a^{2} b^{-1} \cdot 4 a^{2} b^{2}
  1. Apply Exponent Properties: To simplify the expression, we will use the properties of exponents, which state that when multiplying powers with the same base, we add the exponents. We will apply this rule to both the 'aa' terms and the 'bb' terms separately.\newlineCalculation: \newlineFor the 'aa' terms: a3×a2×a2=a3+2+2=a1a^{-3} \times a^{2} \times a^{2} = a^{-3 + 2 + 2} = a^{1}\newlineFor the 'bb' terms: b3×b1×b2=b31+2=b4b^{3} \times b^{-1} \times b^{2} = b^{3 - 1 + 2} = b^{4}
  2. Calculate 'a' Terms: Next, we multiply the coefficients together. The coefficients are 44, 22, and 44.\newlineCalculation: 4×2×4=324 \times 2 \times 4 = 32
  3. Calculate 'b' Terms: Now we combine the results from the previous steps to form the simplified expression.\newlineCalculation: 32×a1×b4=32a×b432 \times a^{1} \times b^{4} = 32a \times b^{4}

More problems from Find derivatives of using multiple formulae