Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.
32^((-3)/(5))=2^◻

Evaluate.\newline3235=2 32^{\frac{-3}{5}}=2^{\square}

Full solution

Q. Evaluate.\newline3235=2 32^{\frac{-3}{5}}=2^{\square}
  1. Evaluate Base: Evaluate the base of the exponent to see if it can be related to the exponent's form. \newline3232 is a power of 22, specifically 252^5, since 2×2×2×2×2=322 \times 2 \times 2 \times 2 \times 2 = 32.
  2. Rewrite Expression: Rewrite the expression using the base of 22.32(3)/(5)32^{(-3)/(5)} can be written as (25)(3)/(5)(2^5)^{(-3)/(5)}.
  3. Apply Power Rule: Apply the power of a power rule, which states that a^b)^c = a^{(b*c)}\. \(\(2^55)^{(3-3)/(55)}\ becomes (2\)^{(55 * (3-3)/(55))}\.
  4. Simplify Exponent: Simplify the exponent by multiplying 55 by 35-\frac{3}{5}.5×(35)=35 \times \left(-\frac{3}{5}\right) = -3.
  5. Negative Exponent: Now the expression is 232^{-3}.\newlineTo simplify a negative exponent, recall that an=1ana^{-n} = \frac{1}{a^n}.\newline23=123.2^{-3} = \frac{1}{2^3}.
  6. Calculate Value: Calculate 232^3. 23=2×2×2=82^3 = 2 \times 2 \times 2 = 8.
  7. Substitute Back: Substitute the value back into the expression.\newline23=123=182^{-3} = \frac{1}{2^3} = \frac{1}{8}.

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 10 months ago