Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

2x^(2)(x^(3)-x)-3x(x^(4)+2x)-2(x^(4)-3x^(2))

2x2(x3x)3x(x4+2x)2(x43x2) 2 x^{2}\left(x^{3}-x\right)-3 x\left(x^{4}+2 x\right)-2\left(x^{4}-3 x^{2}\right)

Full solution

Q. 2x2(x3x)3x(x4+2x)2(x43x2) 2 x^{2}\left(x^{3}-x\right)-3 x\left(x^{4}+2 x\right)-2\left(x^{4}-3 x^{2}\right)
  1. Find Derivative: We need to find the derivative of the given function with respect to xx. The function is a polynomial, and we will use the power rule, product rule, and the sum rule for differentiation.
  2. Apply Product Rule: First, let's apply the product rule to the first term 2x2(x3x)2x^{2}(x^{3}-x). The product rule states that (d/dx)(uv)=uv+uv(d/dx)(u*v) = u'v + uv', where uu and vv are functions of xx. Let u=2x2u = 2x^2 and v=x3xv = x^3 - x.
  3. Simplify First Term: Now, we differentiate uu and vv with respect to xx.
    u=ddx(2x2)=4xu' = \frac{d}{dx}(2x^2) = 4x
    v=ddx(x3x)=3x21v' = \frac{d}{dx}(x^3 - x) = 3x^2 - 1
  4. Apply Product Rule: Applying the product rule, we get the derivative of the first term:\newline(2x2)(x3x)+2x2(x3x)=4x(x3x)+2x2(3x21)(2x^2)'(x^3 - x) + 2x^2(x^3 - x)' = 4x(x^3 - x) + 2x^2(3x^2 - 1)
  5. Simplify Second Term: Now, let's simplify the expression we just found:\newline4x(x3x)+2x2(3x21)=4x44x2+6x42x24x(x^3 - x) + 2x^2(3x^2 - 1) = 4x^4 - 4x^2 + 6x^4 - 2x^2\newlineCombining like terms, we get:\newline10x46x210x^4 - 6x^2
  6. Apply Power Rule: Next, we apply the product rule to the second term 3x(x4+2x)-3x(x^4 + 2x). Let u=3xu = -3x and v=x4+2xv = x^4 + 2x.
  7. Combine Derivatives: Differentiate uu and vv with respect to xx.u=ddx(3x)=3u' = \frac{d}{dx}(-3x) = -3v=ddx(x4+2x)=4x3+2v' = \frac{d}{dx}(x^4 + 2x) = 4x^3 + 2
  8. Simplify Expression: Applying the product rule, we get the derivative of the second term:\newline(3x)(x4+2x)+(3x)(x4+2x)=3(x4+2x)+(3x)(4x3+2) (-3x)'(x^4 + 2x) + (-3x)(x^4 + 2x)' = -3(x^4 + 2x) + (-3x)(4x^3 + 2)
  9. Simplify Expression: Applying the product rule, we get the derivative of the second term:\newline(3x)(x4+2x)+(3x)(x4+2x)=3(x4+2x)+(3x)(4x3+2)(-3x)'(x^4 + 2x) + (-3x)(x^4 + 2x)' = -3(x^4 + 2x) + (-3x)(4x^3 + 2)Now, let's simplify the expression we just found:\newline3(x4+2x)+(3x)(4x3+2)=3x46x12x46x-3(x^4 + 2x) + (-3x)(4x^3 + 2) = -3x^4 - 6x - 12x^4 - 6x\newlineCombining like terms, we get:\newline15x412x-15x^4 - 12x
  10. Simplify Expression: Applying the product rule, we get the derivative of the second term:\newline(3x)(x4+2x)+(3x)(x4+2x)=3(x4+2x)+(3x)(4x3+2)(-3x)'(x^4 + 2x) + (-3x)(x^4 + 2x)' = -3(x^4 + 2x) + (-3x)(4x^3 + 2)Now, let's simplify the expression we just found:\newline3(x4+2x)+(3x)(4x3+2)=3x46x12x46x-3(x^4 + 2x) + (-3x)(4x^3 + 2) = -3x^4 - 6x - 12x^4 - 6x\newlineCombining like terms, we get:\newline15x412x-15x^4 - 12xFor the third term 2(x43x2)-2(x^4 - 3x^2), we can directly apply the power rule since it's a simple polynomial.\newline(d/dx)(2x4+6x2)=8x3+12x(d/dx)(-2x^4 + 6x^2) = -8x^3 + 12x
  11. Simplify Expression: Applying the product rule, we get the derivative of the second term:\newline(3x)(x4+2x)+(3x)(x4+2x)=3(x4+2x)+(3x)(4x3+2)(-3x)'(x^4 + 2x) + (-3x)(x^4 + 2x)' = -3(x^4 + 2x) + (-3x)(4x^3 + 2)Now, let's simplify the expression we just found:\newline3(x4+2x)+(3x)(4x3+2)=3x46x12x46x-3(x^4 + 2x) + (-3x)(4x^3 + 2) = -3x^4 - 6x - 12x^4 - 6x\newlineCombining like terms, we get:\newline15x412x-15x^4 - 12xFor the third term 2(x43x2)-2(x^4 - 3x^2), we can directly apply the power rule since it's a simple polynomial.\newline(d/dx)(2x4+6x2)=8x3+12x(d/dx)(-2x^4 + 6x^2) = -8x^3 + 12xNow, we combine the derivatives of all three terms to get the derivative of the entire function:\newline10x46x215x412x8x3+12x10x^4 - 6x^2 - 15x^4 - 12x - 8x^3 + 12x
  12. Simplify Expression: Applying the product rule, we get the derivative of the second term:\newline(3x)(x4+2x)+(3x)(x4+2x)=3(x4+2x)+(3x)(4x3+2)(-3x)'(x^4 + 2x) + (-3x)(x^4 + 2x)' = -3(x^4 + 2x) + (-3x)(4x^3 + 2)Now, let's simplify the expression we just found:\newline3(x4+2x)+(3x)(4x3+2)=3x46x12x46x-3(x^4 + 2x) + (-3x)(4x^3 + 2) = -3x^4 - 6x - 12x^4 - 6x\newlineCombining like terms, we get:\newline15x412x-15x^4 - 12xFor the third term 2(x43x2)-2(x^4 - 3x^2), we can directly apply the power rule since it's a simple polynomial.\newline(d/dx)(2x4+6x2)=8x3+12x(d/dx)(-2x^4 + 6x^2) = -8x^3 + 12xNow, we combine the derivatives of all three terms to get the derivative of the entire function:\newline10x46x215x412x8x3+12x10x^4 - 6x^2 - 15x^4 - 12x - 8x^3 + 12xSimplify the expression by combining like terms:\newline(10x415x4)6x28x3+(12x+12x)(10x^4 - 15x^4) - 6x^2 - 8x^3 + (-12x + 12x)\newlineThis simplifies to:\newline5x48x36x2-5x^4 - 8x^3 - 6x^2

More problems from Find derivatives of using multiple formulae