Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

2piint_(-sqrt3)^(0)-(x^(3))/(12)sqrt(1+(x^(4))/(16))

2π30x3121+x416 2 \pi \int_{-\sqrt{3}}^{0}-\frac{x^{3}}{12} \sqrt{1+\frac{x^{4}}{16}}

Full solution

Q. 2π30x3121+x416 2 \pi \int_{-\sqrt{3}}^{0}-\frac{x^{3}}{12} \sqrt{1+\frac{x^{4}}{16}}
  1. Simplify integrand: We are given the integral 2π30x3121+x416dx2\pi \int_{-\sqrt{3}}^{0} -\frac{x^{3}}{12}\sqrt{1+\frac{x^{4}}{16}} \, dx. The first step is to simplify the integrand if possible.
  2. Rewrite integral: The integrand is x3121+x416-\frac{x^{3}}{12}\sqrt{1+\frac{x^{4}}{16}}. We can simplify the square root by factoring out x4x^{4} from the expression inside the square root to get 1+x416=16+x416=16+x44\sqrt{1+\frac{x^{4}}{16}} = \sqrt{\frac{16+x^{4}}{16}} = \frac{\sqrt{16+x^{4}}}{4}.
  3. Combine constants: Now, we rewrite the integral with the simplified integrand: 2π30x31216+x44dx2\pi \int_{-\sqrt{3}}^{0} -\frac{x^{3}}{12} \cdot \frac{\sqrt{16+x^{4}}}{4} \, dx.
  4. Use substitution: We can simplify the integral further by combining the constants: 2π30x316+x448dx2\pi \int_{-\sqrt{3}}^{0} -\frac{x^{3}\sqrt{16+x^{4}}}{48} \, dx.
  5. Adjust differential: Next, we need to evaluate the integral. This integral does not have an elementary antiderivative, so we need to use a substitution. Let u=16+x4u = 16 + x^{4}, then du=4x3dxdu = 4x^{3} \, dx.
  6. Express in terms of du: We need to adjust the differential dudu to match the integrand. We have du=4x3dxdu = 4x^{3} \, dx, but our integrand has x348-\frac{x^{3}}{48}. To match the integrand, we divide both sides of the equation by 12-12: du=1124x3dxdu = -\frac{1}{12} \cdot 4x^{3} \, dx, which gives us du=13x3dxdu = -\frac{1}{3}x^{3} \, dx.
  7. Simplify integral: Now we can express x3dxx^{3} \, dx in terms of dudu: x3dx=3dux^{3} \, dx = -3du. Substituting this into the integral, we get 2π(3du)u482\pi \int -\frac{(-3du)\sqrt{u}}{48}.
  8. Pull out constant: Simplify the integral: 2π3u48du2\pi \int \frac{3\sqrt{u}}{48} \, du.
  9. Antiderivative of sqrt(u): We can pull out the constant: 2π348udu2\pi \cdot \frac{3}{48} \int \sqrt{u} \, du.
  10. Substitute back for u: Simplify the constant: 2π116udu2\pi \cdot \frac{1}{16} \int \sqrt{u} \, du.
  11. Evaluate at bounds: The antiderivative of u\sqrt{u} is 23u3/2\frac{2}{3}u^{3/2}. So, we have 2π11623u3/22\pi \cdot \frac{1}{16} \cdot \frac{2}{3}u^{3/2}.
  12. Calculate values: Now we need to substitute back for uu. Since u=16+x4u = 16 + x^{4}, we have 2π11623(16+x4)3/22\pi \cdot \frac{1}{16} \cdot \frac{2}{3}(16 + x^{4})^{3/2}.
  13. Substitute values: We need to evaluate this expression from x=3x = -\sqrt{3} to x=0x = 0. When x=0x = 0, u=16u = 16, and when x=3x = -\sqrt{3}, u=16+(3)4=16+9=25u = 16 + (-\sqrt{3})^{4} = 16 + 9 = 25.
  14. Calculate difference: Evaluating the antiderivative at the bounds gives us 2π11623(253/2163/2)2\pi \cdot \frac{1}{16} \cdot \frac{2}{3}(25^{3/2} - 16^{3/2}).
  15. Multiply everything: Calculate the values: 253/2=12525^{3/2} = 125 and 163/2=6416^{3/2} = 64.
  16. Simplify expression: Substitute these values into the expression: 2π11623(12564)2\pi \cdot \frac{1}{16} \cdot \frac{2}{3}(125 - 64).
  17. Final answer: Calculate the difference: 12564=61125 - 64 = 61.
  18. Final answer: Calculate the difference: 12564=61125 - 64 = 61.Now, multiply everything together: 2π11623612\pi \cdot \frac{1}{16} \cdot \frac{2}{3} \cdot 61.
  19. Final answer: Calculate the difference: 12564=61125 - 64 = 61.Now, multiply everything together: 2π11623612\pi \cdot \frac{1}{16} \cdot \frac{2}{3} \cdot 61.Simplify the expression: 2π124612\pi \cdot \frac{1}{24} \cdot 61.
  20. Final answer: Calculate the difference: 12564=61125 - 64 = 61.Now, multiply everything together: 2π11623612\pi \cdot \frac{1}{16} \cdot \frac{2}{3} \cdot 61.Simplify the expression: 2π124612\pi \cdot \frac{1}{24} \cdot 61.Finally, multiply to get the final answer: 2π61242\pi \cdot \frac{61}{24}.

More problems from Find derivatives of using multiple formulae