Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

2log43+2log45=2\log_{4}3+2\log_{4}5=

Full solution

Q. 2log43+2log45=2\log_{4}3+2\log_{4}5=
  1. Apply Logarithm Property: We can use the property of logarithms that states logb(mn)=nlogb(m)\log_b(m^n) = n\log_b(m) to simplify the expression. This means we can take the coefficient of the logarithm and make it the exponent of the argument.\newlineFor the first term: 2log432\log_{4}3 becomes log4(32)\log_{4}(3^2).\newlineFor the second term: 2log452\log_{4}5 becomes log4(52)\log_{4}(5^2).
  2. Calculate Exponents: Now we calculate the exponents.\newline32=93^2 = 9 and 52=255^2 = 25.\newlineSo, log4(32)\log_{4}(3^2) becomes log49\log_{4}9 and log4(52)\log_{4}(5^2) becomes log425\log_{4}25.
  3. Combine Logarithms: Next, we use the property of logarithms that states logb(m)+logb(n)=logb(mn)\log_b(m) + \log_b(n) = \log_b(m*n) to combine the two logarithms into one.\newlinelog49+log425\log_{4}9 + \log_{4}25 becomes log4(925)\log_{4}(9*25).
  4. Multiply Arguments: Now we multiply 99 by 2525 to get the argument of the single logarithm.\newline9×25=2259 \times 25 = 225.\newlineSo, log4(9×25)\log_{4}(9\times25) becomes log4225\log_{4}225.
  5. Final Simplified Form: The expression is now simplified to a single logarithm: log4225\log_{4}225. This is the final simplified form of the original expression.

More problems from Simplify variable expressions using properties