Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

2*3^((2x)/(7))=30
Which of the following is the solution of the equation?
Choose 1 answer:
(A) 
x=(7)/(2)log_(3)(15)
(B) 
x=(7)/(2)log_(15)(3)
(C) 
x=(7)/(2)log_(30)(6)
(D) 
x=(7)/(2)log_(6)(30)

232x7=30 2 \cdot 3^{\frac{2 x}{7}}=30 \newlineWhich of the following is the solution of the equation?\newlineChoose 11 answer:\newline(A) x=72log3(15) x=\frac{7}{2} \log _{3}(15) \newline(B) x=72log15(3) x=\frac{7}{2} \log _{15}(3) \newlineC) x=72log30(6) x=\frac{7}{2} \log _{30}(6) \newline(D) x=72log6(30) x=\frac{7}{2} \log _{6}(30)

Full solution

Q. 232x7=30 2 \cdot 3^{\frac{2 x}{7}}=30 \newlineWhich of the following is the solution of the equation?\newlineChoose 11 answer:\newline(A) x=72log3(15) x=\frac{7}{2} \log _{3}(15) \newline(B) x=72log15(3) x=\frac{7}{2} \log _{15}(3) \newlineC) x=72log30(6) x=\frac{7}{2} \log _{30}(6) \newline(D) x=72log6(30) x=\frac{7}{2} \log _{6}(30)
  1. Divide and isolate exponential term: Divide both sides of the equation by 22 to isolate the exponential term.\newline232x72=302 \frac{2 \cdot 3^{\frac{2x}{7}}}{2} = \frac{30}{2} \newline32x7=15 3^{\frac{2x}{7}} = 15
  2. Apply logarithm to both sides: Apply the logarithm to both sides of the equation to solve for the exponent. We will use the natural logarithm for convenience, but any logarithm base can be used.\newlineln(32x7)=ln(15) \ln(3^{\frac{2x}{7}}) = \ln(15)
  3. Use power rule of logarithms: Use the power rule of logarithms to bring down the exponent in front of the logarithm.\newline2x7ln(3)=ln(15) \frac{2x}{7} \cdot \ln(3) = \ln(15)
  4. Isolate x by multiplying both sides: Isolate x by multiplying both sides of the equation by 72ln(3)\frac{7}{2\ln(3)}.\newlinex=72ln(3)ln(15) x = \frac{7}{2\ln(3)} \cdot \ln(15)
  5. Recognize equivalence with change of base formula: Recognize that ln(15)ln(3)\frac{\ln(15)}{\ln(3)} is equivalent to log3(15)\log_3(15) by the change of base formula for logarithms.\newlinex=72log3(15) x = \frac{7}{2} \cdot \log_3(15)

More problems from Product property of logarithms