Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
15
m/s
=
4
π
rad/s
×
r
×
sin
(
1
5
∘
)
15\,\text{m/s} = 4\pi\,\text{rad/s} \times r \times \sin(15^\circ)
15
m/s
=
4
π
rad/s
×
r
×
sin
(
1
5
∘
)
View step-by-step help
Home
Math Problems
Calculus
Find derivatives using the quotient rule I
Full solution
Q.
15
m/s
=
4
π
rad/s
×
r
×
sin
(
1
5
∘
)
15\,\text{m/s} = 4\pi\,\text{rad/s} \times r \times \sin(15^\circ)
15
m/s
=
4
π
rad/s
×
r
×
sin
(
1
5
∘
)
Write Equation:
Write down the given equation.
\newline
We are given the equation
15
m/s
=
4
π
rad/s
×
r
×
sin
(
15
°
)
15 \, \text{m/s} = 4\pi \, \text{rad/s} \times r \times \sin(15°)
15
m/s
=
4
π
rad/s
×
r
×
sin
(
15°
)
. We need to solve for
r
r
r
.
Isolate r:
Isolate r in the equation.
\newline
To find r, we need to divide both sides of the equation by
4
π
rad/s
4\pi \, \text{rad/s}
4
π
rad/s
and
sin
(
15
°
)
\sin(15°)
sin
(
15°
)
.
\newline
r
=
15
m/s
4
π
rad/s
×
sin
(
15
°
)
r = \frac{15 \, \text{m/s}}{4\pi \, \text{rad/s} \times \sin(15°)}
r
=
4
π
rad/s
×
s
i
n
(
15°
)
15
m/s
Calculate
sin
(
1
5
∘
)
\sin(15^\circ)
sin
(
1
5
∘
)
:
Calculate
sin
(
1
5
∘
)
\sin(15^\circ)
sin
(
1
5
∘
)
. Using a calculator or trigonometric tables, we find that
sin
(
1
5
∘
)
\sin(15^\circ)
sin
(
1
5
∘
)
is approximately
0.2588
0.2588
0.2588
.
Substitute
sin
(
15
°
)
\sin(15°)
sin
(
15°
)
:
Substitute
sin
(
15
°
)
\sin(15°)
sin
(
15°
)
into the equation.
r
=
15
m/s
4
π
rad/s
×
0.2588
r = \frac{15 \, \text{m/s}}{4\pi \, \text{rad/s} \times 0.2588}
r
=
4
π
rad/s
×
0.2588
15
m/s
Perform Calculation:
Perform the calculation.
\newline
r
=
15
m/s
4
π
×
0.2588
rad/s
r = \frac{15 \, \text{m/s}}{4\pi \times 0.2588 \, \text{rad/s}}
r
=
4
π
×
0.2588
rad/s
15
m/s
\newline
r
≈
15
m/s
3.1416
×
0.2588
rad/s
r \approx \frac{15 \, \text{m/s}}{3.1416 \times 0.2588 \, \text{rad/s}}
r
≈
3.1416
×
0.2588
rad/s
15
m/s
\newline
r
≈
15
m/s
0.8135
rad/s
r \approx \frac{15 \, \text{m/s}}{0.8135 \, \text{rad/s}}
r
≈
0.8135
rad/s
15
m/s
\newline
r
≈
18.44
m
r \approx 18.44 \, \text{m}
r
≈
18.44
m
More problems from Find derivatives using the quotient rule I
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
cos
(
x
)
f(x) = \cos(x)
f
(
x
)
=
cos
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 10 months ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
(
x
)
f(x) = \tan(x)
f
(
x
)
=
tan
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
f(x) = e^x
f
(
x
)
=
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
ln
(
x
)
f(x) = \ln(x)
f
(
x
)
=
ln
(
x
)
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
tan
−
1
x
f(x) = \tan^{-1}{x}
f
(
x
)
=
tan
−
1
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
e
x
f(x) = x e^x
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
x
x
f(x) = \frac{e^x}{x}
f
(
x
)
=
x
e
x
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
e
(
x
+
1
)
f(x) = e^{(x + 1)}
f
(
x
)
=
e
(
x
+
1
)
\newline
f
′
(
x
)
=
f'\left(x\right) =
f
′
(
x
)
=
______
Get tutor help
Posted 10 months ago
Question
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Question
Find the derivative of
g
(
x
)
g(x)
g
(
x
)
.
\newline
g
(
x
)
=
ln
(
2
x
)
g(x) = \ln(2x)
g
(
x
)
=
ln
(
2
x
)
\newline
g
′
(
x
)
=
g^{\prime}(x) =
g
′
(
x
)
=
______
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant