Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(x^(3)y^(5))^(3)*-x^(6)y^(5)

(x3y5)3x6y5 \left(x^{3} y^{5}\right)^{3} \cdot-x^{6} y^{5}

Full solution

Q. (x3y5)3x6y5 \left(x^{3} y^{5}\right)^{3} \cdot-x^{6} y^{5}
  1. Simplify and Apply Power Rule: Simplify the expression inside the parentheses and apply the power rule (am)n=amn(a^m)^n = a^{m*n}.\newline(x3y5)3=x33y53=x9y15(x^{3}y^{5})^{3} = x^{3*3}y^{5*3} = x^9y^{15}
  2. Multiply Simplified Expression: Multiply the simplified expression by the remaining terms. x9y15×x6y5=x(9+6)y(15+5)=x15y20x^9y^{15} \times -x^6y^5 = -x^{(9+6)}y^{(15+5)} = -x^{15}y^{20}

More problems from Find derivatives of using multiple formulae