Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x1+x2+2x3=1x_{1}+x_{2}+2x_{3}=-1\newline x12x2+x3=5 x_{1}-2x_{2}+x_{3}=-5\newline 3x1+x2+x3=3 3x_{1}+x_{2}+x_{3}=3\newline Find all solutions by using the Gaussian elimination & Gauss Jordan Reduction

Full solution

Q. x1+x2+2x3=1x_{1}+x_{2}+2x_{3}=-1\newline x12x2+x3=5 x_{1}-2x_{2}+x_{3}=-5\newline 3x1+x2+x3=3 3x_{1}+x_{2}+x_{3}=3\newline Find all solutions by using the Gaussian elimination & Gauss Jordan Reduction
  1. Set up augmented matrix: Set up the augmented matrix for the system of equations:\newline[1amp;1amp;2amp;amp;11amp;2amp;1amp;amp;53amp;1amp;1amp;amp;3] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 1 & -2 & 1 & | & -5 \\ 3 & 1 & 1 & | & 3 \end{bmatrix}
  2. Perform Gaussian elimination: Perform the first step of Gaussian elimination: Make the first element of the first column a 11 (already done), and use it to zero out the rest of the first column.\newline- Subtract the first row from the second row:\newline[1amp;1amp;2amp;amp;10amp;3amp;1amp;amp;43amp;1amp;1amp;amp;3] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & -3 & -1 & | & -4 \\ 3 & 1 & 1 & | & 3 \end{bmatrix} \newline- Subtract 33 times the first row from the third row:\newline[1amp;1amp;2amp;amp;10amp;3amp;1amp;amp;40amp;2amp;5amp;amp;6] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & -3 & -1 & | & -4 \\ 0 & -2 & -5 & | & 6 \end{bmatrix}
  3. Normalize second row: Normalize the second row by dividing by 3-3:\newline[1amp;1amp;2amp;amp;10amp;1amp;1/3amp;amp;4/30amp;2amp;5amp;amp;6] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & 1 & 1/3 & | & 4/3 \\ 0 & -2 & -5 & | & 6 \end{bmatrix} \newline- Use the second row to zero out the rest of the second column:\newline- Add 22 times the second row to the third row:\newline[1amp;1amp;2amp;amp;10amp;1amp;1/3amp;amp;4/30amp;0amp;13/3amp;amp;22/3] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & 1 & 1/3 & | & 4/3 \\ 0 & 0 & -13/3 & | & 22/3 \end{bmatrix}
  4. Use second row: Normalize the third row by multiplying by 3-3/1313:\newline[1amp;1amp;2amp;amp;10amp;1amp;1/3amp;amp;4/30amp;0amp;1amp;amp;2] \begin{bmatrix} 1 & 1 & 2 & | & -1 \\ 0 & 1 & 1/3 & | & 4/3 \\ 0 & 0 & 1 & | & -2 \end{bmatrix} \newline- Use the third row to zero out the rest of the third column:\newline- Subtract 22 times the third row from the first row and subtract 11/33 times the third row from the second row:\newline[1amp;1amp;0amp;amp;30amp;1amp;0amp;amp;20amp;0amp;1amp;amp;2] \begin{bmatrix} 1 & 1 & 0 & | & 3 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & -2 \end{bmatrix}
  5. Normalize third row: Use the second row to zero out the first column:\newline- Subtract the second row from the first row:\newline[1amp;0amp;0amp;amp;10amp;1amp;0amp;amp;20amp;0amp;1amp;amp;2] \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & -2 \end{bmatrix} \newlineThis is the reduced row echelon form, showing that each variable has a unique solution.

More problems from Solve linear equations with variables on both sides: word problems