Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(x+1)^(2)-36=0
What are the solutions to the given equation?
Choose 1 answer:
(A) 
x=-5,x=7
(B) 
x=-5,x=-7
(c) 
x=5,x=-7
(D) 
x=5,x=7

(x+1)236=0 (x+1)^{2}-36=0 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) x=5,x=7 x=-5, x=7 \newline(B) x=5,x=7 x=-5, x=-7 \newline(C) x=5,x=7 x=5, x=-7 \newline(D) x=5,x=7 x=5, x=7

Full solution

Q. (x+1)236=0 (x+1)^{2}-36=0 \newlineWhat are the solutions to the given equation?\newlineChoose 11 answer:\newline(A) x=5,x=7 x=-5, x=7 \newline(B) x=5,x=7 x=-5, x=-7 \newline(C) x=5,x=7 x=5, x=-7 \newline(D) x=5,x=7 x=5, x=7
  1. Set Equation to Zero: Set the equation equal to zero.\newline(x+1)236=0(x+1)^2 - 36 = 0\newlineThis is a quadratic equation in the form of a difference of squares, which can be factored.
  2. Factor the Equation: Factor the equation.\newline(x+1)236=(x+1+6)(x+16)=0(x+1)^2 - 36 = (x+1 + 6)(x+1 - 6) = 0\newlineThis is because a2b2=(a+b)(ab)a^2 - b^2 = (a + b)(a - b), where a=(x+1)a = (x+1) and b=6b = 6.
  3. Solve for x: Set each factor equal to zero and solve for x.\newline(x+1+6)=0(x+1 + 6) = 0 or (x+16)=0(x+1 - 6) = 0\newlinex+7=0x + 7 = 0 or x5=0x - 5 = 0
  4. Final Solutions: Solve each equation for xx.\newlinex+7=0x + 7 = 0 gives x=7x = -7\newlinex5=0x - 5 = 0 gives x=5x = 5

More problems from Solve linear equations: mixed review