Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify: g(x)=1x2xg(x)=\frac{1-|x|}{2-|x|}

Full solution

Q. Simplify: g(x)=1x2xg(x)=\frac{1-|x|}{2-|x|}
  1. Identify function components: Identify the function and its components.\newlineWe have g(x)=1x2xg(x) = \frac{1-|x|}{2-|x|}. Here, the numerator is 1x1-|x| and the denominator is 2x2-|x|.
  2. Differentiate numerator and denominator: Differentiate the numerator and denominator.\newlineFor the numerator, u(x)=1xu(x) = 1-|x|, u(x)=sign(x)u'(x) = -\text{sign}(x) where sign(x)\text{sign}(x) is the sign function.\newlineFor the denominator, v(x)=2xv(x) = 2-|x|, v(x)=sign(x)v'(x) = -\text{sign}(x).
  3. Apply quotient rule: Apply the quotient rule.\newlineThe quotient rule is (vuuv)/v2(v*u' - u*v') / v^2. Plugging in:\newlineu=sign(x)u' = -\text{sign}(x), v=sign(x)v' = -\text{sign}(x), u=1xu = 1-|x|, v=2xv = 2-|x|.\newlineg(x)=((2x)(sign(x))(1x)(sign(x)))/(2x)2g'(x) = ((2-|x|)*(-\text{sign}(x)) - (1-|x|)*(-\text{sign}(x))) / (2-|x|)^2.
  4. Simplify the derivative: Simplify the derivative.\newlineg(x)=(2sign(x)+xsign(x)+sign(x)xsign(x))/(2x)2.g'(x) = (-2\cdot\text{sign}(x) + |x|\cdot\text{sign}(x) + \text{sign}(x) - |x|\cdot\text{sign}(x)) / (2-|x|)^2.\newlineg(x)=(2sign(x)+sign(x))/(2x)2.g'(x) = (-2\cdot\text{sign}(x) + \text{sign}(x)) / (2-|x|)^2.\newlineg(x)=sign(x)/(2x)2.g'(x) = -\text{sign}(x) / (2-|x|)^2.

More problems from Find derivatives using the chain rule I