Identify function components: Identify the function and its components.We have g(x)=2−∣x∣1−∣x∣. Here, the numerator is 1−∣x∣ and the denominator is 2−∣x∣.
Differentiate numerator and denominator: Differentiate the numerator and denominator.For the numerator, u(x)=1−∣x∣, u′(x)=−sign(x) where sign(x) is the sign function.For the denominator, v(x)=2−∣x∣, v′(x)=−sign(x).
Apply quotient rule: Apply the quotient rule.The quotient rule is (v∗u′−u∗v′)/v2. Plugging in:u′=−sign(x), v′=−sign(x), u=1−∣x∣, v=2−∣x∣.g′(x)=((2−∣x∣)∗(−sign(x))−(1−∣x∣)∗(−sign(x)))/(2−∣x∣)2.
Simplify the derivative: Simplify the derivative.g′(x)=(−2⋅sign(x)+∣x∣⋅sign(x)+sign(x)−∣x∣⋅sign(x))/(2−∣x∣)2.g′(x)=(−2⋅sign(x)+sign(x))/(2−∣x∣)2.g′(x)=−sign(x)/(2−∣x∣)2.
More problems from Find derivatives using the chain rule I