Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(w-3)^(5)-(w-3)^(2)
Which of the following is equivalent to the given expression?
Choose 1 answer:
(A) 
(w-3)^(3)
(B) 
w^(5)-w^(2)-252
(C) 
(w-3)^(2)(w-3)^(3)
(D) 
(w-3)^(2)((w-3)^(3)-1)

(w3)5(w3)2(w-3)^{5}-(w-3)^{2}\newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) (w3)3(w-3)^{3}\newline(B) w5w2252w^{5}-w^{2}-252\newline(C) (w3)2(w3)3(w-3)^{2}(w-3)^{3}\newline(D) (w3)2((w3)31)(w-3)^{2}((w-3)^{3}-1)

Full solution

Q. (w3)5(w3)2(w-3)^{5}-(w-3)^{2}\newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) (w3)3(w-3)^{3}\newline(B) w5w2252w^{5}-w^{2}-252\newline(C) (w3)2(w3)3(w-3)^{2}(w-3)^{3}\newline(D) (w3)2((w3)31)(w-3)^{2}((w-3)^{3}-1)
  1. Understand the Expression: To solve the given problem, we first need to understand the expression and what is being asked. The expression is (w3)5(w3)2(w-3)^{5}-(w-3)^{2}. We are asked to find an equivalent expression among the given options.
  2. Factor Common Base: We recognize that both terms in the expression have a common base of w3w-3 but with different exponents. This suggests that we might be able to factor the expression using properties of exponents.
  3. Apply Exponent Property: We apply the property of exponents that states aman=an(amn1)a^{m} - a^{n} = a^{n}(a^{m-n} - 1) to the given expression. Here, a=(w3)a = (w-3), m=5m = 5, and n=2n = 2. So, we get (w3)2((w3)521)(w-3)^{2}((w-3)^{5-2} - 1).
  4. Simplify Inside Parentheses: Simplifying the expression inside the parentheses gives us (w3)2((w3)31)(w-3)^{2}((w-3)^{3} - 1). This matches one of the given options directly.
  5. Find Equivalent Expression: Therefore, the equivalent expression to the given expression (w3)5(w3)2(w-3)^{5}-(w-3)^{2} is (w3)2((w3)31)(w-3)^{2}((w-3)^{3}-1), which corresponds to option (D)(D).

More problems from Find derivatives of using multiple formulae