Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(u^(0)v^(-4)*(u^(-3)v^(3))^(-2))/(2u)

u0v4(u3v3)22u \frac{u^{0} v^{-4} \cdot\left(u^{-3} v^{3}\right)^{-2}}{2 u}

Full solution

Q. u0v4(u3v3)22u \frac{u^{0} v^{-4} \cdot\left(u^{-3} v^{3}\right)^{-2}}{2 u}
  1. Simplify and Apply Exponent Rule: First, simplify the expression inside the parentheses and apply the exponent rule (am)n=amn(a^m)^n = a^{m*n} to the term (u3v3)2(u^{-3}v^{3})^{-2}.\newline(u0v4(u3v3)2)=u0v4u6v6(u^{0}v^{-4}*(u^{-3}v^{3})^{-2}) = u^{0}v^{-4}*u^{6}v^{-6}
  2. Combine Like Terms: Next, combine the like terms by adding the exponents of uu and vv. \newlineu(0+6)v(46)=u6v(10)u^{(0+6)}v^{(-4-6)} = u^6v^{(-10)}
  3. Divide by 22u: Now, divide the simplified expression by 22u.\newline(u6v10)/(2u)=(1/2)×u(61)×v10(u^6v^{-10})/(2u) = (1/2) \times u^{(6-1)} \times v^{-10}
  4. Simplify by Subtracting Exponents: Simplify the expression by subtracting the exponents of uu.(12)u5v(10)\left(\frac{1}{2}\right) \cdot u^{5} \cdot v^{(-10)}
  5. Write Negative Exponent as Reciprocal: Finally, write the negative exponent as a reciprocal to express the answer without negative exponents.\newline(12)×u5×(1v10)=u52v10(\frac{1}{2}) \times u^5 \times (\frac{1}{v^{10}}) = \frac{u^5}{2v^{10}}

More problems from Find derivatives of using multiple formulae