Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(53)3(\sqrt{5}-3)^3

Full solution

Q. (53)3(\sqrt{5}-3)^3
  1. Expand Expression: Expand the expression using the binomial theorem or by multiplying (53)(\sqrt{5}-3) by itself three times.\newline(53)3=(53)×(53)×(53)(\sqrt{5}-3)^3 = (\sqrt{5}-3) \times (\sqrt{5}-3) \times (\sqrt{5}-3)
  2. Multiply First Two Factors: Multiply the first two factors (53)(\sqrt{5}-3) and (53)(\sqrt{5}-3).(53)×(53)=(5)22×3×5+32=56×5+9=146×5(\sqrt{5}-3) \times (\sqrt{5}-3) = (\sqrt{5})^2 - 2\times3\times\sqrt{5} + 3^2 = 5 - 6\times\sqrt{5} + 9 = 14 - 6\times\sqrt{5}
  3. Multiply Result with Remaining Factor: Multiply the result from Step 22 by the remaining factor (53)(\sqrt{5}-3).(1465)×(53)(14 - 6\sqrt{5}) \times (\sqrt{5}-3)=14542655+185= 14\sqrt{5} - 42 - 6\sqrt{5}\sqrt{5} + 18\sqrt{5}=145426×5+185= 14\sqrt{5} - 42 - 6\times 5 + 18\sqrt{5}=145+1854230= 14\sqrt{5} + 18\sqrt{5} - 42 - 30=(14+18)572= (14 + 18)\sqrt{5} - 72=32572= 32\sqrt{5} - 72

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago