Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[log_(3)8~~1.9],[log_(3)10~~2.1],[log_(3)11~~2.2],[" Find "log_(3)100]:}

2222) log381.9log3102.1log3112.2 Find log3100 \begin{array}{l}\log _{3} 8 \approx 1.9 \\ \log _{3} 10 \approx 2.1 \\ \log _{3} 11 \approx 2.2 \\ \text { Find } \log _{3} 100\end{array}

Full solution

Q. 2222) log381.9log3102.1log3112.2 Find log3100 \begin{array}{l}\log _{3} 8 \approx 1.9 \\ \log _{3} 10 \approx 2.1 \\ \log _{3} 11 \approx 2.2 \\ \text { Find } \log _{3} 100\end{array}
  1. Express 100100 as 10×1010\times10: We are given approximate values for log3(8)\log_{3}(8), log3(10)\log_{3}(10), and log3(11)\log_{3}(11). We need to find the value of log3(100)\log_{3}(100). We can use the property of logarithms that states logb(m×n)=logb(m)+logb(n)\log_{b}(m\times n) = \log_{b}(m) + \log_{b}(n), where bb is the base, mm, and nn are the numbers. We can express 100100 as 10×1010\times1011.
  2. Apply logarithm property: Using the given approximations, we know that log310\log_{3} 10 is approximately 2.12.1. Since 100100 is 10×1010 \times 10, we can write log3100\log_{3} 100 as log3(10×10)\log_{3} (10 \times 10).
  3. Substitute approximate values: Applying the logarithm property mentioned earlier, we get log3100=log310+log310\log_{3} 100 = \log_{3} 10 + \log_{3} 10.
  4. Calculate final value: Substituting the approximate value for log310\log_{3} 10, we get log3100=2.1+2.1\log_{3} 100 = 2.1 + 2.1.
  5. Calculate final value: Substituting the approximate value for log310\log_{3} 10, we get log3100=2.1+2.1\log_{3} 100 = 2.1 + 2.1. Adding the two values together, we find that log3100\log_{3} 100 is approximately 2.1+2.1=4.22.1 + 2.1 = 4.2.

More problems from Find derivatives of logarithmic functions