Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find dydx\frac{dy}{dx} and d2ydx2\frac{d^2y}{dx^2}, x=1+t2y=tt3x=1+t^2\quad y=t-t^3

Full solution

Q. Find dydx\frac{dy}{dx} and d2ydx2\frac{d^2y}{dx^2}, x=1+t2y=tt3x=1+t^2\quad y=t-t^3
  1. Differentiate xx with respect to tt: Differentiate xx with respect to tt to find dxdt\frac{dx}{dt}.\newlinex=1+t2x = 1 + t^2\newlinedxdt=ddt(1+t2)\frac{dx}{dt} = \frac{d}{dt}(1 + t^2)\newlinedxdt=0+2t\frac{dx}{dt} = 0 + 2t
  2. Differentiate yy with respect to tt: Differentiate yy with respect to tt to find dydt\frac{dy}{dt}.
    y=tt3y = t - t^3
    dydt=ddt(tt3)\frac{dy}{dt} = \frac{d}{dt}(t - t^3)
    dydt=13t2\frac{dy}{dt} = 1 - 3t^2
  3. Find dydx\frac{dy}{dx}: Find dydx\frac{dy}{dx} by dividing dydt\frac{dy}{dt} by dxdt\frac{dx}{dt}.
    dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
    dydx=13t22t\frac{dy}{dx} = \frac{1 - 3t^2}{2t}
  4. Differentiate dydx\frac{dy}{dx} with respect to tt: Differentiate dydx\frac{dy}{dx} with respect to tt to find d2ydx2\frac{d^2y}{dx^2}.
    d2ydx2=ddt(dydx)/(dxdt)\frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) / \left(\frac{dx}{dt}\right)
    d2ydx2=ddt(13t22t)/(2t)\frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{1 - 3t^2}{2t}\right) / \left(2t\right)
  5. Apply the quotient rule: Apply the quotient rule to differentiate (13t2)/(2t)(1 - 3t^2) / (2t).\newlineLet u=13t2u = 1 - 3t^2 and v=2tv = 2t.\newlineThen dudt=6t\frac{du}{dt} = -6t and dvdt=2\frac{dv}{dt} = 2.\newlineUsing the quotient rule: (dudtvudvdt)/v2(\frac{du}{dt} \cdot v - u \cdot \frac{dv}{dt}) / v^2\newlined2ydx2=((6t2t)(13t2)2)/(2t)2\frac{d^2y}{dx^2} = ((-6t \cdot 2t) - (1 - 3t^2) \cdot 2) / (2t)^2
  6. Simplify the expression: Simplify the expression for d2y/dx2d^2y/dx^2.
    d2y/dx2=(12t22+6t2)/(4t2)d^2y/dx^2 = (-12t^2 - 2 + 6t^2) / (4t^2)
    d2y/dx2=(6t22)/(4t2)d^2y/dx^2 = (-6t^2 - 2) / (4t^2)
    d2y/dx2=3212t2d^2y/dx^2 = -\frac{3}{2} - \frac{1}{2t^2}

More problems from Find derivatives of sine and cosine functions