Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

f(x)=(-x^(2)+7x-10)/(6x+11)

f(x)=x2+7x106x+11f(x)=\frac{-x^{2}+7 x-10}{6 x+11}

Full solution

Q. f(x)=x2+7x106x+11f(x)=\frac{-x^{2}+7 x-10}{6 x+11}
  1. Identify Function and Rule: Identify the function and the rule to use for differentiation.\newlineWe have a function of the form u(x)v(x)\frac{u(x)}{v(x)}, where u(x)=x2+7x10u(x) = -x^2 + 7x - 10 and v(x)=6x+11v(x) = 6x + 11. To find the derivative of a quotient, we use the quotient rule, which states that (uv)=vuuvv2(\frac{u}{v})' = \frac{v*u' - u*v'}{v^2}.
  2. Differentiate Numerator: Differentiate the numerator u(x)=x2+7x10u(x) = -x^2 + 7x - 10. Using the power rule, the derivative of u(x)u(x) with respect to xx is u(x)=ddx(x2)+ddx(7x)ddx(10)=2x+7u'(x) = \frac{d}{dx}(-x^2) + \frac{d}{dx}(7x) - \frac{d}{dx}(10) = -2x + 7.
  3. Differentiate Denominator: Differentiate the denominator v(x)=6x+11v(x) = 6x + 11. Using the power rule and the constant rule, the derivative of v(x)v(x) with respect to xx is v(x)=ddx(6x)+ddx(11)=6v'(x) = \frac{d}{dx}(6x) + \frac{d}{dx}(11) = 6.
  4. Apply Quotient Rule: Apply the quotient rule.\newlineNow we apply the quotient rule: f(x)=vuuvv2f'(x) = \frac{v*u' - u*v'}{v^2}.\newlineSubstituting the derivatives we found in Steps 22 and 33, we get:\newlinef(x)=(6x+11)(2x+7)(x2+7x10)6(6x+11)2f'(x) = \frac{(6x + 11)(-2x + 7) - (-x^2 + 7x - 10)6}{(6x + 11)^2}.
  5. Expand and Simplify: Expand the numerator and simplify.\newlineExpanding the numerator, we get:\newlinef(x)=(12x2+42x+6x77(6x2+42x60))/(6x+11)2.f'(x) = (-12x^2 + 42x + 6x - 77 - (-6x^2 + 42x - 60)) / (6x + 11)^2.\newlineSimplifying the numerator, we get:\newlinef(x)=(12x2+48x77+6x242x+60)/(6x+11)2.f'(x) = (-12x^2 + 48x - 77 + 6x^2 - 42x + 60) / (6x + 11)^2.\newlinef(x)=(6x2+6x17)/(6x+11)2.f'(x) = (-6x^2 + 6x - 17) / (6x + 11)^2.
  6. Check for Simplifications: Check for any possible simplifications. The numerator and the denominator do not have any common factors, so this is the simplified form of the derivative.

More problems from Find derivatives of logarithmic functions