Calculate f(1): Calculate f(1) directly from the given information.f(1)=1
Integrate f′(x): To find f(−2), integrate f′(x) to get f(x). The integral of f′(x)=8x3−12x is:∫(8x3−12x)dx=2x4−6x2+C, where C is the constant of integration.
Find Constant C: Use the given f(1)=1 to find C. 1=2(1)4−6(1)2+C 1=2−6+C C=5
Substitute x=−2: Now substitute x=−2 into f(x)=2x4−6x2+5 to find f(−2). f(−2)=2(−2)4−6(−2)2+5 f(−2)=2(16)−6(4)+5 f(−2)=32−24+5 f(−2)=13
More problems from Find derivatives of sine and cosine functions