Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[f^(')(x)=-(4)/(x^(2))" and "f(2)=4],[f(1)=]:}

f(x)=4x2 and f(2)=4f(1)= \begin{array}{l}f^{\prime}(x)=-\frac{4}{x^{2}} \text { and } f(2)=4 \\ f(1)=\end{array}

Full solution

Q. f(x)=4x2 and f(2)=4f(1)= \begin{array}{l}f^{\prime}(x)=-\frac{4}{x^{2}} \text { and } f(2)=4 \\ f(1)=\end{array}
  1. Understand the problem: Understand the problem.\newlineWe are given the derivative of a function f(x)f(x), which is f(x)=4x2f'(x) = -\frac{4}{x^2}, and a point on the function, f(2)=4f(2) = 4. We need to find the value of the function at x=1x = 1, which is f(1)f(1).
  2. Integrate the derivative: Integrate the derivative to find the original function.\newlineTo find f(x)f(x), we need to integrate f(x)f'(x). The integral of f(x)=4x2f'(x) = -\frac{4}{x^2} with respect to x is:\newlinef(x)dx=4x2dx=41x2dx=4x2dx\int f'(x) \, dx = \int -\frac{4}{x^2} \, dx = 4\int -\frac{1}{x^2} \, dx = 4\int x^{-2} \, dx\newlineThe antiderivative of x2x^{-2} is x1-x^{-1}, so we have:\newlinef(x)=4(x1)+Cf(x) = 4(-x^{-1}) + C\newlinef(x)=4x+Cf(x) = -\frac{4}{x} + C, where CC is the constant of integration.
  3. Use the given point: Use the given point to find the constant of integration.\newlineWe know that f(2)=4f(2) = 4, so we can plug this into the equation to solve for CC:\newline4=42+C4 = -\frac{4}{2} + C\newline4=2+C4 = -2 + C\newlineC=4+2C = 4 + 2\newlineC=6C = 6\newlineNow we have the original function:\newlinef(x)=4x+6f(x) = -\frac{4}{x} + 6
  4. Find f(1)f(1): Find f(1)f(1) using the original function.\newlineNow that we have f(x)f(x), we can find f(1)f(1) by plugging in x=1x = 1:\newlinef(1)=41+6f(1) = -\frac{4}{1} + 6\newlinef(1)=4+6f(1) = -4 + 6\newlinef(1)=2f(1) = 2

More problems from Find derivatives of logarithmic functions