Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[f^(')(x)=3x^(2)-2x+7" and "],[f(6)=200.],[f(1)=]:}

f(x)=3x22x+7 and f(6)=200.f(1)= \begin{array}{l}f^{\prime}(x)=3 x^{2}-2 x+7 \text { and } f(6)=200 . \\ f(1)=\end{array}

Full solution

Q. f(x)=3x22x+7 and f(6)=200.f(1)= \begin{array}{l}f^{\prime}(x)=3 x^{2}-2 x+7 \text { and } f(6)=200 . \\ f(1)=\end{array}
  1. Find f(1)f(1): To find the value of f(1)f(1), we need to integrate the derivative f(x)f'(x) to get the original function f(x)f(x). Then we can use the given value f(6)=200f(6) = 200 to find the constant of integration.
  2. Integrate f(x)f'(x): Integrate f(x)=3x22x+7f'(x) = 3x^2 - 2x + 7 with respect to xx to find f(x)f(x).
    (3x22x+7)dx=(33)x3(22)x2+7x+C\int(3x^2 - 2x + 7) \, dx = \left(\frac{3}{3}\right)x^3 - \left(\frac{2}{2}\right)x^2 + 7x + C
    f(x)=x3x2+7x+Cf(x) = x^3 - x^2 + 7x + C, where CC is the constant of integration.
  3. Find Constant C: Use the given value f(6)=200f(6) = 200 to find the constant C.f(6)=6362+76+C=200f(6) = 6^3 - 6^2 + 7\cdot 6 + C = 20021636+42+C=200216 - 36 + 42 + C = 200222+C=200222 + C = 200C=200222C = 200 - 222C=22C = -22
  4. Calculate f(1)f(1): Now that we have the constant CC, we can find f(1)f(1).
    f(1)=1312+7122f(1) = 1^3 - 1^2 + 7 \cdot 1 - 22
    f(1)=11+722f(1) = 1 - 1 + 7 - 22
    f(1)=722f(1) = 7 - 22
    f(1)=15f(1) = -15

More problems from Find derivatives of sine and cosine functions