Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

dydx(x)(1(3x2)9)\frac{dy}{dx}\left(x\right)\left(\frac{1}{\left(3x-2\right)^{9}}\right)

Full solution

Q. dydx(x)(1(3x2)9)\frac{dy}{dx}\left(x\right)\left(\frac{1}{\left(3x-2\right)^{9}}\right)
  1. Identify uu and vv: We need to find the derivative of the function x(3x2)9\frac{x}{(3x-2)^{9}} with respect to xx. This is a quotient, so we will use the quotient rule which states that ddx(uv)=v(u)u(v)v2\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v(u') - u(v')}{v^2}, where uu is the numerator and vv is the denominator.
  2. Find derivative of uu: Let's identify uu and vv for our function. Here, u=xu = x and v=(3x2)9v = (3x-2)^9. We will need to find the derivatives of uu and vv, which are uu' and vv' respectively.
  3. Find derivative of vv: First, we find the derivative of uu with respect to xx. Since u=xu = x, the derivative uu' is simply 11 because the derivative of xx with respect to xx is 11.\newlineu=ddx(x)=1u' = \frac{d}{dx}(x) = 1
  4. Apply quotient rule: Next, we find the derivative of vv with respect to xx. Since v=(3x2)9v = (3x-2)^9, we will use the chain rule. The chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function. In this case, the outer function is f(t)=t9f(t) = t^9 and the inner function is g(x)=3x2g(x) = 3x-2.v=ddx((3x2)9)=9(3x2)8ddx(3x2)=9(3x2)83v' = \frac{d}{dx}((3x-2)^9) = 9(3x-2)^8 \cdot \frac{d}{dx}(3x-2) = 9(3x-2)^8 \cdot 3
  5. Simplify expression: Now we can apply the quotient rule. We have u=1u' = 1 and v=9(3x2)8×3v' = 9(3x-2)^8 \times 3. Plugging these into the quotient rule formula, we get:\newline(dy/dx)=(3x2)9×1x×9(3x2)8×3(3x2)18(dy/dx) = \frac{(3x-2)^9 \times 1 - x \times 9(3x-2)^8 \times 3}{(3x-2)^{18}}
  6. Factor out common term: Simplify the expression by distributing and combining like terms:\newline(dydx)=(3x2)927x(3x2)8(3x2)18(\frac{dy}{dx}) = \frac{(3x-2)^9 - 27x(3x-2)^8}{(3x-2)^{18}}
  7. Cancel out common term: We can factor out a (3x2)8(3x-2)^8 from the numerator to simplify the expression further:\newline(dy/dx)=(3x2)8(127x)(3x2)18(dy/dx) = \frac{(3x-2)^8 \cdot (1 - 27x)}{(3x-2)^{18}}
  8. Final derivative: Now we can cancel out (3x2)8(3x-2)^8 from the numerator and denominator: (dy/dx)=127x(3x2)10(dy/dx) = \frac{1 - 27x}{(3x-2)^{10}}
  9. Final derivative: Now we can cancel out (3x2)8(3x-2)^8 from the numerator and denominator:\newline(dy/dx)=127x(3x2)10(dy/dx) = \frac{1 - 27x}{(3x-2)^{10}}We have found the derivative of the function x(3x2)9\frac{x}{(3x-2)^{9}} with respect to x, which is:\newline(dy/dx)=127x(3x2)10(dy/dx) = \frac{1 - 27x}{(3x-2)^{10}}

More problems from Find derivatives of using multiple formulae