Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

dydx(x)(1(3x2)6)\frac{dy}{dx}\left(x\right)\left(\frac{1}{\left(3x-2\right)^{6}}\right)

Full solution

Q. dydx(x)(1(3x2)6)\frac{dy}{dx}\left(x\right)\left(\frac{1}{\left(3x-2\right)^{6}}\right)
  1. Identify uu and vv: We need to find the derivative of the function x(3x2)6\frac{x}{(3x-2)^{6}} with respect to xx. This is a quotient, so we will use the quotient rule which states that ddx(uv)=v(u)u(v)v2\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v(u') - u(v')}{v^2}, where uu is the numerator and vv is the denominator.
  2. Find uu' and vv': Let's identify uu and vv for our function. Here, u=xu = x and v=(3x2)6v = (3x-2)^6. We will need to find the derivatives of uu and vv, denoted as uu' and vv' respectively.
  3. Derivative of u: First, we find the derivative of u with respect to x. Since u=xu = x, the derivative u=ddx(x)=1u' = \frac{d}{dx}(x) = 1.
  4. Derivative of v: Next, we find the derivative of vv with respect to xx. Since v=(3x2)6v = (3x-2)^6, we will use the chain rule. The chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function. So, v=ddx((3x2)6)=6(3x2)5ddx(3x2)=6(3x2)53v' = \frac{d}{dx}((3x-2)^6) = 6*(3x-2)^5 * \frac{d}{dx}(3x-2) = 6*(3x-2)^5 * 3.
  5. Apply quotient rule: Now we apply the quotient rule. The derivative of our function with respect to xx is given by:\newline(dydx)=(3x2)6(ddx)(x)x(ddx)((3x2)6)((3x2)6)2(\frac{dy}{dx}) = \frac{(3x-2)^6 \cdot (\frac{d}{dx})(x) - x \cdot (\frac{d}{dx})((3x-2)^6)}{((3x-2)^6)^2}\newlineSubstituting the derivatives we found, we get:\newline(dydx)=(3x2)61x6(3x2)53((3x2)12)(\frac{dy}{dx}) = \frac{(3x-2)^6 \cdot 1 - x \cdot 6\cdot(3x-2)^5 \cdot 3}{((3x-2)^{12})}
  6. Simplify expression: Simplify the expression by distributing and combining like terms: (dydx)=(3x2)618x(3x2)5(3x2)12(\frac{dy}{dx}) = \frac{(3x-2)^6 - 18x(3x-2)^5}{(3x-2)^{12}}
  7. Factor out: We can factor out a (3x2)5(3x-2)^5 from the numerator to simplify the expression further:\newline(dy/dx)=(3x2)5(118x)((3x2)12)(dy/dx) = \frac{(3x-2)^5 \cdot (1 - 18x)}{((3x-2)^{12})}
  8. Cancel out: Now we can cancel out (3x2)5(3x-2)^5 from the numerator and denominator: (dy/dx)=118x(3x2)7(dy/dx) = \frac{1 - 18x}{(3x-2)^7}
  9. Final derivative: We have found the derivative of the function x(3x2)6\frac{x}{(3x-2)^{6}} with respect to xx, which is 118x(3x2)7\frac{1 - 18x}{(3x-2)^7}.

More problems from Find derivatives of using multiple formulae