Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(dy)/(dt)=-7y, and 
y=3 when 
t=0.
Solve the equation.
Choose 1 answer:
(A) 
y=3e^(-7t)
(B) 
y=e^(-7t)
(C) 
y=3+e^(-7t)
(D) 
y=2+e^(-7t)

dydt=7y \frac{d y}{d t}=-7 y , and y=3 y=3 when t=0 t=0 .\newlineSolve the equation.\newlineChoose 11 answer:\newline(A) y=3e7t y=3 e^{-7 t} \newline(B) y=e7t y=e^{-7 t} \newline(C) y=3+e7t y=3+e^{-7 t} \newline(D) y=2+e7t y=2+e^{-7 t}

Full solution

Q. dydt=7y \frac{d y}{d t}=-7 y , and y=3 y=3 when t=0 t=0 .\newlineSolve the equation.\newlineChoose 11 answer:\newline(A) y=3e7t y=3 e^{-7 t} \newline(B) y=e7t y=e^{-7 t} \newline(C) y=3+e7t y=3+e^{-7 t} \newline(D) y=2+e7t y=2+e^{-7 t}
  1. Identify Differential Equation: The given differential equation is a first-order linear homogeneous differential equation. To solve it, we can use separation of variables.
  2. Separate Variables: Separate the variables yy and tt by dividing both sides by yy and multiplying both sides by dtdt:(dyy)=7dt\left(\frac{dy}{y}\right) = -7 dt
  3. Integrate Equations: Integrate both sides of the equation: (1y)dy=7dt\int(\frac{1}{y}) \, dy = \int -7 \, dt
  4. Find Constant of Integration: The integral of 1y\frac{1}{y} with respect to yy is lny\ln|y|, and the integral of 7-7 with respect to tt is 7t-7t. So we have:\newlinelny=7t+C\ln|y| = -7t + C, where CC is the constant of integration.
  5. Apply Initial Condition: To find the constant of integration CC, we use the initial condition y=3y=3 when t=0t=0:
    ln3=7(0)+C\ln|3| = -7(0) + C
    C=ln(3)C = \ln(3)
  6. Finalize Equation: Now we have the equation with the constant CC:lny=7t+ln(3)\ln|y| = -7t + \ln(3)
  7. Exponentiate to Eliminate Log: To solve for yy, we exponentiate both sides of the equation to get rid of the natural logarithm: elny=e7t+ln(3)e^{\ln|y|} = e^{-7t + \ln(3)}
  8. Remove Absolute Value: Since elnx=xe^{\ln|x|} = |x| for any xx, we have:\newliney=e7teln(3)|y| = e^{-7t} \cdot e^{\ln(3)}
  9. Final Solution: Since yy is initially positive (y=3y=3 when t=0t=0), we can drop the absolute value bars:\newliney=3e7ty = 3 \cdot e^{-7t}
  10. Final Solution: Since yy is initially positive (y=3y=3 when t=0t=0), we can drop the absolute value bars: y=3e7ty = 3 \cdot e^{-7t} The solution to the differential equation is y=3e7ty = 3 \cdot e^{-7t}, which corresponds to answer choice (A).

More problems from Find derivatives of using multiple formulae