Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(a12+b12)3(a12b12)3 (a^{\frac{1}{2}}+b^{\frac{1}{2}})^3 \cdot (a^{\frac{1}{2}} - b^{\frac{1}{2}})^3

Full solution

Q. (a12+b12)3(a12b12)3 (a^{\frac{1}{2}}+b^{\frac{1}{2}})^3 \cdot (a^{\frac{1}{2}} - b^{\frac{1}{2}})^3
  1. Expand First Term: First, let's expand (a12+b12)3(a^{\frac{1}{2}}+b^{\frac{1}{2}})^3 using the binomial theorem.\newline(a12+b12)3=a32+3ab12+3a12b+b32(a^{\frac{1}{2}}+b^{\frac{1}{2}})^3 = a^{\frac{3}{2}} + 3a \cdot b^{\frac{1}{2}} + 3a^{\frac{1}{2}} \cdot b + b^{\frac{3}{2}}
  2. Expand Second Term: Now, let's expand (a12b12)3(a^{\frac{1}{2}} - b^{\frac{1}{2}})^3 using the binomial theorem.\newline(a12b12)3=a323ab12+3a12bb32(a^{\frac{1}{2}} - b^{\frac{1}{2}})^3 = a^{\frac{3}{2}} - 3a \cdot b^{\frac{1}{2}} + 3a^{\frac{1}{2}} \cdot b - b^{\frac{3}{2}}
  3. Multiply Expanded Forms: Next, we multiply the two expanded forms together. \newline(a32+3ab12+3a12b+b32)(a323ab12+3a12bb32)(a^{\frac{3}{2}} + 3a \cdot b^{\frac{1}{2}} + 3a^{\frac{1}{2}} \cdot b + b^{\frac{3}{2}}) \cdot (a^{\frac{3}{2}} - 3a \cdot b^{\frac{1}{2}} + 3a^{\frac{1}{2}} \cdot b - b^{\frac{3}{2}})
  4. Apply Difference of Squares: We notice that this is a product of a sum and a difference, which resembles the pattern (x+y)(xy)=x2y2(x + y)(x - y) = x^2 - y^2. So, we can simplify the expression to (a(3/2))2(b(3/2))2(a^{(3/2)})^2 - (b^{(3/2)})^2.
  5. Calculate Final Result: Now, let's calculate (a32)2(a^{\frac{3}{2}})^2 and (b32)2(b^{\frac{3}{2}})^2.(a32)2=a3(a^{\frac{3}{2}})^2 = a^{3} and (b32)2=b3(b^{\frac{3}{2}})^2 = b^{3}
  6. Calculate Final Result: Now, let's calculate (a32)2(a^{\frac{3}{2}})^2 and (b32)2(b^{\frac{3}{2}})^2.(a32)2=a3(a^{\frac{3}{2}})^2 = a^{3} and (b32)2=b3(b^{\frac{3}{2}})^2 = b^{3}Subtract the two values to get the final result.a3b3a^{3} - b^{3}

More problems from Find derivatives of using multiple formulae