Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(8x^(2))^((2)/(3))=

(8x2)23= \left(8 x^{2}\right)^{\frac{2}{3}}=

Full solution

Q. (8x2)23= \left(8 x^{2}\right)^{\frac{2}{3}}=
  1. Apply Power Rule: Evaluate the expression using the power of a power rule, which states that (am)n=amn(a^m)^n = a^{m*n}.(8x2)23=823×(x2)23(8x^{2})^{\frac{2}{3}} = 8^{\frac{2}{3}} \times (x^{2})^{\frac{2}{3}}
  2. Simplify 8238^{\frac{2}{3}}: Simplify 8238^{\frac{2}{3}}. Since 88 is 232^3, we can rewrite 88 as 232^3 and then apply the power of a power rule.\newline823=(23)23=2323=22=48^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3*\frac{2}{3}} = 2^2 = 4
  3. Simplify (x2)23(x^{2})^{\frac{2}{3}}: Simplify (x2)23(x^{2})^{\frac{2}{3}}. Using the power of a power rule again, we multiply the exponents.(x2)23=x223=x43(x^{2})^{\frac{2}{3}} = x^{2*\frac{2}{3}} = x^{\frac{4}{3}}
  4. Combine Terms: Combine the simplified terms to get the final answer. 4×x434 \times x^{\frac{4}{3}}

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 9 months ago

QuestionGet tutor helpright-arrow

Posted 11 months ago