Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(88)(83)=(8^{-8})(8^{3})=\Box

Full solution

Q. (88)(83)=(8^{-8})(8^{3})=\Box
  1. Identify Bases and Exponents: Identify the bases and the exponents in the expression.\newlineIn the expression (88)(83)(8^{-8})(8^{3}), the base is 88 for both terms, with exponents 8-8 and 33 respectively.\newlineBase: 88\newlineExponents: 8-8, 33
  2. Apply Exponent Property: Apply the property of exponents for multiplying with the same base.\newlineWhen multiplying terms with the same base, you add the exponents.\newline(88)(83)=88+3(8^{-8})(8^{3}) = 8^{-8 + 3}
  3. Add Exponents: Add the exponents.\newline8+3=5-8 + 3 = -5\newlineSo, (88)(83)=85(8^{-8})(8^{3}) = 8^{-5}
  4. Evaluate with Simplified Exponent: Evaluate the expression with the simplified exponent.\newline858^{-5} means 11 divided by 88 raised to the power of 55.\newline85=1/(85)8^{-5} = 1 / (8^5)
  5. Calculate Exponent: Calculate 88 raised to the power of 55.\newline85=8×8×8×8×88^5 = 8 \times 8 \times 8 \times 8 \times 8\newline85=327688^5 = 32768
  6. Divide to Find Value: Divide 11 by 3276832768 to find the value of 858^{-5}. \newline85=1/327688^{-5} = 1 / 32768
  7. Write Final Answer: Write the final answer.\newline(88)(83)=85=1/32768(8^{-8})(8^{3}) = 8^{-5} = 1 / 32768

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 10 months ago