Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

((4c^(3)d^(-1))^(4))/(2^(-1)c^(-2)d^(5))

(4c3d1)421c2d5 \frac{\left(4 c^{3} d^{-1}\right)^{4}}{2^{-1} c^{-2} d^{5}}

Full solution

Q. (4c3d1)421c2d5 \frac{\left(4 c^{3} d^{-1}\right)^{4}}{2^{-1} c^{-2} d^{5}}
  1. Apply Power Rule: First, we will simplify the expression by applying the power of a power rule and the negative exponent rule.\newlineThe power of a power rule states that (am)n=amn(a^m)^n = a^{m*n}.\newlineThe negative exponent rule states that an=1/ana^{-n} = 1/a^n.\newlineLet's apply these rules to the given expression.\newline((4c3d1)4)/(21c2d5)=(44c34d14)/(21c2d5)((4c^{3}d^{-1})^{4})/(2^{-1}c^{-2}d^{5}) = (4^4 \cdot c^{3\cdot4} \cdot d^{-1\cdot4}) / (2^{-1} \cdot c^{-2} \cdot d^{5})\newline=(256c12d4)/(1/21/c2d5)= (256 \cdot c^{12} \cdot d^{-4}) / (1/2 \cdot 1/c^{2} \cdot d^{5})
  2. Simplify by Multiplying: Next, we will simplify the expression further by multiplying the terms in the numerator and the denominator.\newline256c12d42c21d5=512c12+2d45256 \cdot c^{12} \cdot d^{-4} \cdot 2 \cdot c^{2} \cdot \frac{1}{d^{5}} = 512 \cdot c^{12+2} \cdot d^{-4-5}\newline=512c14d9= 512 \cdot c^{14} \cdot d^{-9}
  3. Move Negative Exponents: Now, we will apply the negative exponent rule again to move the negative exponents from the denominator to the numerator. 512×c14×d9=512×c14/d9512 \times c^{14} \times d^{-9} = 512 \times c^{14} / d^{9}
  4. Final Answer: Finally, we have the simplified form of the expression.\newlineThe final answer is 512×c14/d9512 \times c^{14} / d^{9}.

More problems from Find derivatives of using multiple formulae