Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(3x(22)y3x2y(12))2\left(\frac{3x^{\left(\frac{2}{2}\right)}y^{3}}{x^{2}y^{-\left(\frac{1}{2}\right)}}\right)^{-2}

Full solution

Q. (3x(22)y3x2y(12))2\left(\frac{3x^{\left(\frac{2}{2}\right)}y^{3}}{x^{2}y^{-\left(\frac{1}{2}\right)}}\right)^{-2}
  1. Simplify Inside Parentheses: First, simplify the expression inside the parentheses before applying the exponent of 2-2.\newlineThe expression x(2/2)x^{(2/2)} simplifies to x(1)x^{(1)} or just xx, because any number raised to the power of 11 is itself.
  2. Divide Like Bases: Now, simplify the expression inside the parentheses by dividing the terms with the same base.\newline(3x1y3)/(x2y1/2)(3x^1y^3) / (x^2y^{-1/2}) simplifies to 3x(12)y(3(1/2))3x^{(1-2)}y^{(3-(-1/2))} by subtracting the exponents of like bases.
  3. Subtract Exponents: Perform the subtraction of the exponents for xx and yy. For xx: 12=11 - 2 = -1 For yy: 3(12)=3+12=3.53 - (-\frac{1}{2}) = 3 + \frac{1}{2} = 3.5 or 72\frac{7}{2} The simplified expression inside the parentheses is now 3x1y723x^{-1}y^{\frac{7}{2}}.
  4. Apply Exponent: Apply the exponent of 2-2 to the simplified expression.\newline(3x1y72)2(3x^{-1}y^{\frac{7}{2}})^{-2} means that each factor inside the parentheses is raised to the power of 2-2.
  5. Raise to Power: Raise each factor inside the parentheses to the power of 2-2.\newlineFor the coefficient 33: (3)2=1(32)=19(3)^{-2} = \frac{1}{(3^2)} = \frac{1}{9}\newlineFor x1x^{-1}: (x1)2=x(1)(2)=x2(x^{-1})^{-2} = x^{(-1)\cdot(-2)} = x^2\newlineFor y72y^{\frac{7}{2}}: (y72)2=y(72)(2)=y7(y^{\frac{7}{2}})^{-2} = y^{(\frac{7}{2})\cdot(-2)} = y^{-7}\newlineThe expression now looks like 19x2y7\frac{1}{9}x^2y^{-7}.
  6. Final Simplified Form: The final simplified form of the expression is (19)x2y7(\frac{1}{9})x^2y^{-7}.\newlineSince y7y^{-7} is in the denominator when moved out of the exponent, the final answer is (19)x2/(y7)(\frac{1}{9})x^2/(y^7).

More problems from Find derivatives of using multiple formulae