Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

limx02cosx13x2=\lim_{x \to 0}\frac{\sqrt{2-\cos x}-1}{3x^{2}}=\square

Full solution

Q. limx02cosx13x2=\lim_{x \to 0}\frac{\sqrt{2-\cos x}-1}{3x^{2}}=\square
  1. Recognize Indeterminate Form: To solve this limit, we first need to recognize that direct substitution of x=0x = 0 into the expression would result in the indeterminate form 0/00/0. Therefore, we need to apply a technique to simplify the expression or use L'Hôpital's Rule. In this case, we can try to simplify the expression first by multiplying the numerator and denominator by the conjugate of the numerator to eliminate the square root.
  2. Multiply by Conjugate: Multiply the numerator and denominator by the conjugate of the numerator, which is (sqrt(22-cos x)+11), to rationalize the numerator.\newlinelimx02cosx13x22cosx+12cosx+1 \lim_{x \to 0} \frac{\sqrt{2-cos x}-1}{3x^2} \cdot \frac{\sqrt{2-cos x}+1}{\sqrt{2-cos x}+1}
  3. Simplify Numerator: After multiplying, we get:\newlinelimx0(2cosx)123x2(2cosx+1) \lim_{x \to 0} \frac{(2-cos x)-1^2}{3x^2(\sqrt{2-cos x}+1)} \newlineSimplify the numerator:\newlinelimx02cosx13x2(2cosx+1) \lim_{x \to 0} \frac{2-cos x-1}{3x^2(\sqrt{2-cos x}+1)} \newlinelimx01cosx3x2(2cosx+1) \lim_{x \to 0} \frac{1-cos x}{3x^2(\sqrt{2-cos x}+1)}
  4. Apply Trigonometric Identity: Now, we can apply the trigonometric identity cos2(x)+sin2(x)=1cos^2(x) + sin^2(x) = 1 to recognize that 1cosx=sin2(x)1 - cos x = sin^2(x). This gives us:\newlinelimx0sin2(x)3x2(2cosx+1) \lim_{x \to 0} \frac{sin^2(x)}{3x^2(\sqrt{2-cos x}+1)}
  5. Cancel x^22: We can now simplify the expression by canceling out x2x^2 in the numerator and denominator:\newlinelimx0sin2(x)/x23(2cosx+1) \lim_{x \to 0} \frac{sin^2(x)/x^2}{3(\sqrt{2-cos x}+1)}
  6. Use Trigonometric Limit: We know that limx0sin(x)x=1\lim_{x \to 0} \frac{sin(x)}{x} = 1, so we can use this to further simplify the expression:\newlinelimx013(2cosx+1) \lim_{x \to 0} \frac{1}{3(\sqrt{2-cos x}+1)} \newlineSince xx is approaching 00, cosxcos x approaches cos(0)=1cos(0) = 1, and the square root in the denominator approaches 21=1=1\sqrt{2-1} = \sqrt{1} = 1.
  7. Substitute Limit: Substitute the limit into the expression:\newline13(21+1)=13(1+1)=13(2)=16 \frac{1}{3(\sqrt{2-1}+1)} = \frac{1}{3(1+1)} = \frac{1}{3(2)} = \frac{1}{6}

More problems from Simplify variable expressions using properties