Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

[3(2j5k)2]2[-3(2j-5k)^2]^2

Full solution

Q. [3(2j5k)2]2[-3(2j-5k)^2]^2
  1. Identify expression and exponents: Identify the expression inside the brackets and the exponents.\newlineThe expression inside the brackets is (2j5k)2(2j-5k)^2, and it is being squared again by the outer exponent of 22.
  2. Square expression inside brackets: Square the expression inside the brackets.\newlineTo square (2j5k)2(2j-5k)^2, we multiply the expression by itself: (2j5k)×(2j5k)(2j-5k)\times(2j-5k).
  3. Use FOIL method to expand: Use the FOIL method (First, Outer, Inner, Last) to expand the expression.\newline(2j5k)(2j5k)=(2j2j)+(2j5k)+(5k2j)+(5k5k)(2j-5k)*(2j-5k) = (2j*2j) + (2j*-5k) + (-5k*2j) + (-5k*-5k)
  4. Simplify terms from expansion: Simplify the terms from the FOIL expansion.\newline(2j2j)=4j2(2j\cdot2j) = 4j^2, (2j(5k))=10jk(2j\cdot(-5k)) = -10jk, (5k2j)=10jk(-5k\cdot2j) = -10jk, (5k(5k))=25k2(-5k\cdot(-5k)) = 25k^2\newlineSo, (2j5k)2=4j210jk10jk+25k2(2j-5k)^2 = 4j^2 - 10jk - 10jk + 25k^2
  5. Combine like terms: Combine like terms from the simplified FOIL expansion.\newline10jk10jk=20jk-10jk - 10jk = -20jk\newlineSo, (2j5k)2=4j220jk+25k2(2j-5k)^2 = 4j^2 - 20jk + 25k^2
  6. Apply outer exponent: Apply the outer exponent of 22 to the squared expression.\newline[3(4j220jk+25k2)]2[-3(4j^2 - 20jk + 25k^2)]^2 means we need to square 3-3 and multiply it by the square of the expression (4j220jk+25k2)(4j^2 - 20jk + 25k^2).
  7. Square coefficient 3-3: Square the coefficient 3-3.\newline(3)2=9(-3)^2 = 9
  8. Square trinomial expression: Square the expression (4j220jk+25k2)(4j^2 - 20jk + 25k^2). When squaring a trinomial, each term is squared and the cross-products are doubled. (4j2)2=16j4(4j^2)^2 = 16j^4, (20jk)2=400j2k2(-20jk)^2 = 400j^2k^2, (25k2)2=625k4(25k^2)^2 = 625k^4
  9. Calculate cross-products: Calculate the cross-products and double them.\newlineThe cross-products are 2×(4j2×20jk)2\times(4j^2\times-20jk) and 2×(20jk×25k2)2\times(-20jk\times25k^2).\newline2×(4j2×20jk)=160j3k2\times(4j^2\times-20jk) = -160j^3k, 2×(20jk×25k2)=1000jk32\times(-20jk\times25k^2) = -1000jk^3
  10. Combine squared terms: Combine the squared terms and the doubled cross-products.\newline16j4+(160j3k)+400j2k2+(1000jk3)+625k416j^4 + (-160j^3k) + 400j^2k^2 + (-1000jk^3) + 625k^4
  11. Multiply by squared coefficient: Multiply the combined expression by the squared coefficient 99. \newline9(16j4160j3k+400j2k21000jk3+625k4)9*(16j^4 - 160j^3k + 400j^2k^2 - 1000jk^3 + 625k^4)
  12. Distribute coefficient to terms: Distribute the coefficient 99 to each term in the expression.\newline9×16j4=144j49 \times 16j^4 = 144j^4, 9×(160j3k)=1440j3k9 \times (-160j^3k) = -1440j^3k, 9×400j2k2=3600j2k29 \times 400j^2k^2 = 3600j^2k^2, 9×(1000jk3)=9000jk39 \times (-1000jk^3) = -9000jk^3, 9×625k4=5625k49 \times 625k^4 = 5625k^4
  13. Combine distributed terms: Combine the distributed terms to get the final expression. 144j41440j3k+3600j2k29000jk3+5625k4144j^4 - 1440j^3k + 3600j^2k^2 - 9000jk^3 + 5625k^4

More problems from Understanding negative exponents

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago