Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(2z1)(z22z+1)=(2z-1)(z^2-2z+1)=

Full solution

Q. (2z1)(z22z+1)=(2z-1)(z^2-2z+1)=
  1. Identify Terms: Identify the terms in each polynomial.\newlineIn the expression (2z1)(z22z+1)(2z-1)(z^2-2z+1), (2z1)(2z-1) is the first binomial and (z22z+1)(z^2-2z+1) is the second trinomial.\newlineFirst Binomial Terms: 2z2z, 1-1\newlineSecond Trinomial Terms: z2z^2, 2z-2z, +1+1
  2. Use Distributive Property: Use the distributive property (also known as the FOIL method for binomials) to multiply each term in the first binomial by each term in the second trinomial.\newlineThe distributive property states that a(b+c+d)=ab+ac+ada(b + c + d) = ab + ac + ad.\newlineApplying this to our polynomials, we get:\newline(2z1)(z2)+(2z1)(2z)+(2z1)(1)(2z-1)(z^2) + (2z-1)(-2z) + (2z-1)(1)
  3. Distribute Terms: Distribute each term in the binomial across the terms in the trinomial.\newlineThis gives us:\newline(2zz2)+(2z2z)+(2z1)+(1z2)+(12z)+(11)(2z \cdot z^2) + (2z \cdot -2z) + (2z \cdot 1) + (-1 \cdot z^2) + (-1 \cdot -2z) + (-1 \cdot 1)
  4. Perform Multiplication: Perform the multiplication for each term.\newlineNow we multiply the coefficients and add the exponents for terms with the same base:\newline(2z3)+(4z2)+(2z)+(z2)+(2z)+(1)(2z^3) + (-4z^2) + (2z) + (-z^2) + (2z) + (-1)
  5. Combine Like Terms: Combine like terms.\newlineWe combine terms with the same exponents:\newline2z3+(4z2z2)+(2z+2z)12z^3 + (-4z^2 - z^2) + (2z + 2z) - 1\newlineThis simplifies to:\newline2z35z2+4z12z^3 - 5z^2 + 4z - 1

More problems from Powers with negative bases

QuestionGet tutor helpright-arrow

Posted 7 months ago

QuestionGet tutor helpright-arrow

Posted 9 months ago