Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(26.5) 
cos^(2)(2x)-2cos(2x)=-1. Solve on 
[0,2pi]

(2626.55) cos2(2x)2cos(2x)=1 \cos ^{2}(2 x)-2 \cos (2 x)=-1 . Solve on [0,2π] [0,2 \pi]

Full solution

Q. (2626.55) cos2(2x)2cos(2x)=1 \cos ^{2}(2 x)-2 \cos (2 x)=-1 . Solve on [0,2π] [0,2 \pi]
  1. Recognize as quadratic equation: Recognize the equation as a quadratic in terms of cos(2x)\cos(2x). Let y=cos(2x)y = \cos(2x). Then the equation becomes y22y=1y^2 - 2y = -1.
  2. Rearrange to standard form: Rearrange the equation to standard quadratic form.\newliney22y+1=0y^2 - 2y + 1 = 0
  3. Factor the quadratic: Factor the quadratic equation.\newline(y1)2=0(y - 1)^2 = 0
  4. Solve for y: Solve for y.\newliney1=0y - 1 = 0\newliney=1y = 1
  5. Substitute back for yy: Substitute back cos(2x)\cos(2x) for yy.cos(2x)=1\cos(2x) = 1
  6. Solve for 2x2x: Solve for 2x2x within the interval [0,4π][0, 4\pi], since 2x2x has twice the period of xx.\newline2x=0+2kπ2x = 0 + 2k\pi or 2x=π+2kπ2x = \pi + 2k\pi, where kk is an integer.
  7. Solve for x: Solve for x by dividing by 22.\newlinex=02+kπx = \frac{0}{2} + k\pi or x=π2+kπx = \frac{\pi}{2} + k\pi\newlinex=kπx = k\pi or x=π2+kπx = \frac{\pi}{2} + k\pi
  8. Find solutions within interval: Find all solutions within the interval [0,2π][0, 2\pi].\newlineFor x=kπx = k\pi, the solutions are x=0x = 0, π\pi, 2π2\pi.\newlineFor x=π2+kπx = \frac{\pi}{2} + k\pi, the only solution within [0,2π][0, 2\pi] is x=π2x = \frac{\pi}{2}.
  9. Combine all solutions: Combine all the solutions.\newlineThe solutions are x=0x = 0, π2\frac{\pi}{2}, π\pi, 2π2\pi.

More problems from Find derivatives of sine and cosine functions