Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

((m^(5)n^(3)p^(-4))/(m^(-5)n^(-2)))^(3)
Write your answer using only positive exponents.

(m5n3p4m5n2)3\left(\frac{m^{5} n^{3} p^{-4}}{m^{-5} n^{-2}}\right)^{3}\newlineWrite your answer using only positive exponents.

Full solution

Q. (m5n3p4m5n2)3\left(\frac{m^{5} n^{3} p^{-4}}{m^{-5} n^{-2}}\right)^{3}\newlineWrite your answer using only positive exponents.
  1. Simplify Inside Parentheses: First, we will simplify the expression inside the parentheses by using the properties of exponents. Specifically, we will use the property that states a(b)/a(c)=a(bc)a^{(b)}/a^{(c)} = a^{(b-c)} to combine the mm and nn terms.\newline((m5n3p4)/(m5n2))=m5(5)n3(2)p4((m^{5}n^{3}p^{-4})/(m^{-5}n^{-2})) = m^{5 - (-5)} * n^{3 - (-2)} * p^{-4}
  2. Combine Exponents: Now we will perform the subtraction in the exponents for mm and nn.
    m(5(5))=m(5+5)=m10m^{(5 - (-5))} = m^{(5 + 5)} = m^{10}
    n(3(2))=n(3+2)=n5n^{(3 - (-2))} = n^{(3 + 2)} = n^{5}
    The pp term remains the same since there is no pp term in the denominator to combine with.
    So we have m10×n5×p4m^{10} \times n^{5} \times p^{-4}.
  3. Raise to Power of 33: Next, we will raise each term to the power of 33, as indicated by the exponent outside the parentheses.\newline(m10n5p4)3=m103n53p43(m^{10} \cdot n^{5} \cdot p^{-4})^{3} = m^{10\cdot3} \cdot n^{5\cdot3} \cdot p^{-4\cdot3}
  4. Perform Exponent Multiplication: Now we will perform the multiplication in the exponents.\newlinem(10×3)=m30m^{(10\times3)} = m^{30}\newlinen(5×3)=n15n^{(5\times3)} = n^{15}\newlinep(4×3)=p12p^{(-4\times3)} = p^{-12}
  5. Final Expression with Positive Exponents: Finally, we will write the expression using only positive exponents. Since p12p^{-12} has a negative exponent, we will write it as 1/p121/p^{12} to make the exponent positive.\newlineThe final simplified expression is m30n15(1/p12)m^{30} \cdot n^{15} \cdot (1/p^{12}).

More problems from Find derivatives of using multiple formulae