Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
(12x^(3)y^(3)+10x^(2)y^(3)-12x^(2)y^(2)+12 xy^(3))/(2xy)

Simplify.\newline12x3y3+10x2y312x2y2+12xy32xy \frac{12 x^{3} y^{3}+10 x^{2} y^{3}-12 x^{2} y^{2}+12 x y^{3}}{2 x y}

Full solution

Q. Simplify.\newline12x3y3+10x2y312x2y2+12xy32xy \frac{12 x^{3} y^{3}+10 x^{2} y^{3}-12 x^{2} y^{2}+12 x y^{3}}{2 x y}
  1. Factor out common terms: We will start by factoring out the common terms in the numerator and canceling them with the denominator.\newline(12x3y3+10x2y312x2y2+12xy3)/(2xy)=(2xy)(6x2y2+5xy26xy+6y2)/(2xy)(12x^{3}y^{3}+10x^{2}y^{3}-12x^{2}y^{2}+12xy^{3})/(2xy) = (2xy)(6x^{2}y^{2}+5xy^{2}-6xy+6y^{2})/(2xy)
  2. Cancel common terms: Now we cancel the common factor of 2xy2xy in the numerator and the denominator.\newline(2xy)(6x2y2+5xy26xy+6y2)2xy=6x2y2+5xy26xy+6y2\frac{(2xy)(6x^{2}y^{2}+5xy^{2}-6xy+6y^{2})}{2xy} = 6x^{2}y^{2}+5xy^{2}-6xy+6y^{2}
  3. Simplify expression: We can now simplify the expression by combining like terms if there are any. However, in this case, there are no like terms to combine.\newlineSo the final simplified form is 6x2y2+5xy26xy+6y26x^{2}y^{2}+5xy^{2}-6xy+6y^{2}.

More problems from Find derivatives of using multiple formulae