Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Precalculus
Add, subtract, multiply, and divide complex numbers
Simplify.
\newline
(
1
−
5
i
)
5
(1 - 5i)5
(
1
−
5
i
)
5
\newline
Write your answer in the form
a
+
b
i
a + bi
a
+
bi
.
\newline
______
Get tutor help
Add, subtract, multiply, or divide as indicated to simplify each expression. Remember to work within the parentheses first.
\newline
(
12
÷
6
)
÷
2
(12\div6)\div2
(
12
÷
6
)
÷
2
Get tutor help
Simplify
4
2
t
+
1
4^{2 t+1}
4
2
t
+
1
. Write your answer using only positive exponents.
\newline
The solution is
Get tutor help
Rewrite in simplest terms:
0.4
(
f
−
3
f
+
5
)
−
0.6
f
0.4(f-3 f+5)-0.6 f
0.4
(
f
−
3
f
+
5
)
−
0.6
f
\newline
Answer:
Get tutor help
Rewrite in simplest terms:
0.9
s
−
0.5
(
−
2
s
+
2
)
0.9 s-0.5(-2 s+2)
0.9
s
−
0.5
(
−
2
s
+
2
)
\newline
Answer:
Get tutor help
Rewrite in simplest terms:
−
0.7
(
−
5
x
−
8
)
+
0.5
x
-0.7(-5 x-8)+0.5 x
−
0.7
(
−
5
x
−
8
)
+
0.5
x
\newline
Answer:
Get tutor help
If
a
1
=
1
,
a
2
=
3
a_{1}=1, a_{2}=3
a
1
=
1
,
a
2
=
3
and
a
n
=
2
a
n
−
1
−
2
a
n
−
2
a_{n}=2 a_{n-1}-2 a_{n-2}
a
n
=
2
a
n
−
1
−
2
a
n
−
2
then find the value of
a
6
a_{6}
a
6
.
\newline
Answer:
Get tutor help
If
a
1
=
5
,
a
2
=
0
a_{1}=5, a_{2}=0
a
1
=
5
,
a
2
=
0
and
a
n
=
a
n
−
1
−
a
n
−
2
a_{n}=a_{n-1}-a_{n-2}
a
n
=
a
n
−
1
−
a
n
−
2
then find the value of
a
4
a_{4}
a
4
.
\newline
Answer:
Get tutor help
If
a
1
=
5
,
a
2
=
1
a_{1}=5, a_{2}=1
a
1
=
5
,
a
2
=
1
and
a
n
=
a
n
−
1
−
a
n
−
2
a_{n}=a_{n-1}-a_{n-2}
a
n
=
a
n
−
1
−
a
n
−
2
then find the value of
a
6
a_{6}
a
6
.
\newline
Answer:
Get tutor help
Simplify the expression completely.
\newline
−
3
64
−
−
9
+
2
16
-3 \sqrt{64}-\sqrt{-9}+2 \sqrt{16}
−
3
64
−
−
9
+
2
16
\newline
Answer:
Get tutor help
Simplify the expression completely.
\newline
−
100
−
4
−
9
−
−
16
-\sqrt{100}-4 \sqrt{-9}-\sqrt{-16}
−
100
−
4
−
9
−
−
16
\newline
Answer:
Get tutor help
Fully simplify.
\newline
2
x
2
y
(
11
x
y
4
)
2 x^{2} y\left(11 x y^{4}\right)
2
x
2
y
(
11
x
y
4
)
\newline
Answer:
Get tutor help
Solve for
x
\mathrm{x}
x
.
\newline
x
4
=
13
2
\frac{x}{4}=\frac{13}{2}
4
x
=
2
13
\newline
Answer:
Get tutor help
Solve for
x
\mathrm{x}
x
.
\newline
4
5
=
x
25
\frac{4}{5}=\frac{x}{25}
5
4
=
25
x
\newline
Answer:
Get tutor help
Solve for
x
\mathrm{x}
x
.
\newline
x
4
=
−
15
2
\frac{x}{4}=-\frac{15}{2}
4
x
=
−
2
15
\newline
Answer:
Get tutor help
Use the distributive property to write an equivalent expression.
\newline
3
(
8
v
+
3
)
3(8 v+3)
3
(
8
v
+
3
)
\newline
Answer:
Get tutor help
Rewrite in simplest terms:
7
m
−
4
(
−
7
m
−
5
)
7 m-4(-7 m-5)
7
m
−
4
(
−
7
m
−
5
)
\newline
Answer:
Get tutor help
Use multiplication to expand the expression below. Then compute.
\newline
(
−
10
)
3
(-10)^{3}
(
−
10
)
3
\newline
Press the
×
\times
×
button or type the * symbol on your keyboard to represent multiplication.
\newline
Expanded form:
\newline
Answer:
Get tutor help
Use multiplication to expand the expression below. Then compute.
\newline
(
−
6
)
2
(-6)^{2}
(
−
6
)
2
\newline
Press the
×
\times
×
button or type the * symbol on your keyboard to represent multiplication.
\newline
Expanded form:
\newline
Answer:
Get tutor help
Perform the operation and simplify the answer fully.
\newline
9
4
⋅
8
7
\frac{9}{4} \cdot \frac{8}{7}
4
9
⋅
7
8
\newline
Answer:
Get tutor help
Convert the decimal below to a fraction in simplest form.
\newline
0.519
0.519
0.519
\newline
Answer:
Get tutor help
Convert the decimal below to a fraction in simplest form.
\newline
0.519
0.519
0.519
\newline
Answer:
\newline
Submit Answer
Get tutor help
Simplify
ln
(
1
)
\ln (1)
ln
(
1
)
\newline
Answer:
Get tutor help
Simplify
ln
(
e
)
\ln (e)
ln
(
e
)
\newline
Answer:
Get tutor help