Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

If 
a_(1)=5,a_(2)=0 and 
a_(n)=a_(n-1)-a_(n-2) then find the value of 
a_(4).
Answer:

If a1=5,a2=0 a_{1}=5, a_{2}=0 and an=an1an2 a_{n}=a_{n-1}-a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:

Full solution

Q. If a1=5,a2=0 a_{1}=5, a_{2}=0 and an=an1an2 a_{n}=a_{n-1}-a_{n-2} then find the value of a4 a_{4} .\newlineAnswer:
  1. Given Sequence and Formula: We are given the first two terms of the sequence: a1=5a_{1} = 5 and a2=0a_{2} = 0. We are also given the recursive formula for the sequence: an=an1an2a_{n} = a_{n-1} - a_{n-2}. To find a4a_{4}, we first need to find a3a_{3} using the recursive formula.
  2. Calculate a3a_{3}: Using the recursive formula, we calculate a3a_{3} as follows:\newlinea3=a2a1a_{3} = a_{2} - a_{1}\newlinea3=05a_{3} = 0 - 5\newlinea3=5a_{3} = -5
  3. Calculate a4a_{4}: Now that we have a3a_{3}, we can use it along with a2a_{2} to find a4a_{4} using the same recursive formula:\newlinea4=a3a2a_{4} = a_{3} - a_{2}\newlinea4=50a_{4} = -5 - 0\newlinea4=5a_{4} = -5

More problems from Add, subtract, multiply, and divide complex numbers