Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Grade 6
Multiply using the distributive property
Simplify the expression:
\newline
3
(
1
+
2
y
)
=
3(1 + 2y) =
3
(
1
+
2
y
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
b
+
2
)
=
2(b + 2) =
2
(
b
+
2
)
=
_
_
_
_
_
\_\_\_\_\_
_____
Get tutor help
Simplify the expression:
\newline
(
1
+
5
q
)
(
6
)
=
(1 + 5q)(6) =
(
1
+
5
q
)
(
6
)
=
_____
Get tutor help
Simplify the expression:
\newline
3
(
1
+
2
b
)
=
3(1 + 2b) =
3
(
1
+
2
b
)
=
_
_
_
_
_
\_\_\_\_\_
_____
Get tutor help
Simplify the expression:
\newline
2
(
2
+
7
r
)
=
2(2 + 7r) =
2
(
2
+
7
r
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
2
+
w
)
=
2(2 + w) =
2
(
2
+
w
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
5
n
+
4
)
=
2(5n + 4) =
2
(
5
n
+
4
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
1
+
4
r
)
=
2(1 + 4r) =
2
(
1
+
4
r
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
5
y
+
3
)
(
2
)
=
(5y + 3)(2) =
(
5
y
+
3
)
(
2
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
1
+
c
)
=
2(1 + c) =
2
(
1
+
c
)
=
_____
Get tutor help
Simplify the expression:
\newline
8
(
4
t
+
1
)
=
8(4t + 1) =
8
(
4
t
+
1
)
=
_
_
_
_
_
\_\_\_\_\_
_____
Get tutor help
Simplify the expression:
\newline
8
(
1
+
p
)
=
8(1 + p) =
8
(
1
+
p
)
=
_____
Get tutor help
Simplify the expression:
\newline
6
(
4
t
+
1
)
=
6(4t + 1) =
6
(
4
t
+
1
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
3
+
m
)
=
2(3 + m) =
2
(
3
+
m
)
=
_
_
_
_
_
\_\_\_\_\_
_____
Get tutor help
Simplify the expression:
\newline
3
(
9
c
+
2
)
=
3(9c + 2) =
3
(
9
c
+
2
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
k
+
1
)
=
2(k + 1) =
2
(
k
+
1
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
3
+
3
u
)
(
2
)
=
(3 + 3u)(2) =
(
3
+
3
u
)
(
2
)
=
_____
Get tutor help
Simplify the expression:
\newline
4
(
2
+
q
)
=
4(2 + q) =
4
(
2
+
q
)
=
_
_
_
_
_
\_\_\_\_\_
_____
Get tutor help
Simplify the expression:
\newline
(
2
+
4
s
)
(
5
)
=
(2 + 4s)(5) =
(
2
+
4
s
)
(
5
)
=
_____
Get tutor help
Simplify the expression:
\newline
6
(
1
+
3
r
)
=
6(1 + 3r) =
6
(
1
+
3
r
)
=
_____
Get tutor help
Simplify the expression:
\newline
8
(
2
n
+
1
)
=
8(2n + 1) =
8
(
2
n
+
1
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
5
d
+
2
)
(
3
)
=
(5d + 2)(3) =
(
5
d
+
2
)
(
3
)
=
_____
Get tutor help
Simplify the expression:
\newline
6
(
1
+
4
z
)
=
6(1 + 4z) =
6
(
1
+
4
z
)
=
_____
Get tutor help
Simplify the expression:
\newline
4
(
2
+
5
q
)
=
4(2 + 5q) =
4
(
2
+
5
q
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
5
x
+
4
)
(
2
)
=
(5x + 4)(2) =
(
5
x
+
4
)
(
2
)
=
_____
Get tutor help
Simplify the expression:
\newline
4
(
2
+
6
g
)
=
4(2 + 6g) =
4
(
2
+
6
g
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
10
d
+
1
)
(
3
)
=
(10d + 1)(3) =
(
10
d
+
1
)
(
3
)
=
_____
Get tutor help
Simplify the expression:
\newline
7
(
1
+
3
r
)
=
7(1 + 3r) =
7
(
1
+
3
r
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
1
+
2
b
)
(
3
)
=
(1 + 2b)(3) =
(
1
+
2
b
)
(
3
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
x
+
1
)
(
2
)
=
(x + 1)(2) =
(
x
+
1
)
(
2
)
=
_____
Get tutor help
Simplify the expression:
\newline
6
(
3
q
+
1
)
=
6(3q + 1) =
6
(
3
q
+
1
)
=
_____
Get tutor help
Simplify the expression:
\newline
5
(
2
+
4
v
)
=
5(2 + 4v) =
5
(
2
+
4
v
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
5
+
7
w
)
=
2(5 + 7w) =
2
(
5
+
7
w
)
=
_____
Get tutor help
Simplify the expression:
\newline
3
(
2
+
8
p
)
=
3(2 + 8p) =
3
(
2
+
8
p
)
=
_____
Get tutor help
Simplify the expression:
\newline
6
(
1
+
4
r
)
=
6(1 + 4r) =
6
(
1
+
4
r
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
10
u
+
5
)
(
2
)
=
(10u + 5)(2) =
(
10
u
+
5
)
(
2
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
2
+
10
q
)
=
2(2 + 10q) =
2
(
2
+
10
q
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
5
+
5
s
)
=
2(5 + 5s) =
2
(
5
+
5
s
)
=
_____
Get tutor help
Simplify the expression:
\newline
3
(
1
+
6
m
)
=
3(1 + 6m) =
3
(
1
+
6
m
)
=
_
_
_
_
_
\_\_\_\_\_
_____
Get tutor help
Simplify the expression:
\newline
4
(
2
+
2
m
)
=
_
_
_
_
_
4(2 + 2m) = \,\_\_\_\_\_
4
(
2
+
2
m
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
2
+
q
)
=
2(2 + q) =
2
(
2
+
q
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
5
+
4
k
)
=
2(5 + 4k) =
2
(
5
+
4
k
)
=
_____
Get tutor help
Simplify the expression:
\newline
3
(
3
+
8
m
)
=
3(3 + 8m) =
3
(
3
+
8
m
)
=
_____
Get tutor help
Solve for
y
y
y
:
\newline
−
1
2
=
3
8
y
y
=
□
\begin{array}{l} -\frac{1}{2}=\frac{3}{8} y \\ y=\square \end{array}
−
2
1
=
8
3
y
y
=
□
Get tutor help
Solve for
f
f
f
:
\newline
−
3
4
f
=
5
4
f
=
□
\begin{array}{l} -\frac{3}{4} f=\frac{5}{4} \\ f=\square \end{array}
−
4
3
f
=
4
5
f
=
□
Get tutor help
Solve for
x
x
x
:
\newline
10
3
=
x
(
−
5
2
)
x
=
□
\begin{array}{l} \frac{10}{3}=\frac{x}{\left(-\frac{5}{2}\right)} \\ x=\square \end{array}
3
10
=
(
−
2
5
)
x
x
=
□
Get tutor help
Solve for
t
t
t
:
\newline
t
÷
5
12
=
−
3
10
t
=
□
\begin{array}{l} t \div \frac{5}{12}=-\frac{3}{10} \\ t=\square \end{array}
t
÷
12
5
=
−
10
3
t
=
□
Get tutor help
Solve for
z
z
z
:
\newline
−
7
=
z
−
6
z
=
□
\begin{array}{l} -7=\frac{z}{-6} \\ z=\square \end{array}
−
7
=
−
6
z
z
=
□
Get tutor help
Solve for
x
x
x
:
\newline
−
15
=
x
−
0.5
x
=
□
\begin{array}{l} -15=\frac{x}{-0.5} \\ x=\square \end{array}
−
15
=
−
0.5
x
x
=
□
Get tutor help
Simplify the expression:
\newline
3
(
1
+
4
r
)
=
3(1 + 4r) =
3
(
1
+
4
r
)
=
_____
Get tutor help
1
2
3
...
5
Next