Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Solve for
y
y
y
:
\newline
−
1
2
=
3
8
y
y
=
□
\begin{array}{l} -\frac{1}{2}=\frac{3}{8} y \\ y=\square \end{array}
−
2
1
=
8
3
y
y
=
□
View step-by-step help
Home
Math Problems
Grade 6
Multiply using the distributive property
Full solution
Q.
Solve for
y
y
y
:
\newline
−
1
2
=
3
8
y
y
=
□
\begin{array}{l} -\frac{1}{2}=\frac{3}{8} y \\ y=\square \end{array}
−
2
1
=
8
3
y
y
=
□
Isolate y by division:
First, let's isolate y by dividing both sides of the equation by
(
3
8
)
(\frac{3}{8})
(
8
3
)
.
\newline
−
(
1
2
)
÷
(
3
8
)
=
y
-\left(\frac{1}{2}\right) \div \left(\frac{3}{8}\right) = y
−
(
2
1
)
÷
(
8
3
)
=
y
Multiply by reciprocal:
To divide by a
fraction
, multiply by its reciprocal.
\newline
−
1
2
×
8
3
=
y
-\frac{1}{2} \times \frac{8}{3} = y
−
2
1
×
3
8
=
y
Multiply numerators and denominators:
Now, multiply the numerators and denominators.
\newline
−
1
×
8
=
−
8
-1 \times 8 = -8
−
1
×
8
=
−
8
and
2
×
3
=
6
2 \times 3 = 6
2
×
3
=
6
, so
y
=
−
8
6
y = \frac{-8}{6}
y
=
6
−
8
Simplify the fraction:
Simplify the fraction by dividing both numerator and denominator by
2
2
2
.
y
=
−
4
3
y = \frac{-4}{3}
y
=
3
−
4
More problems from Multiply using the distributive property
Question
z
=
6.2
+
37
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=6.2+37 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
6.2
+
37
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
4.1
i
+
85
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=4.1 i+85 \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
4.1
i
+
85
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
6
−
3
i
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=6-3 i \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
6
−
3
i
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
z
=
14
i
+
12.1
Re
(
z
)
=
Im
(
z
)
=
\begin{array}{l}z=14 i+12.1 \\ \operatorname{Re}(z)= \\ \operatorname{Im}(z)=\end{array}
z
=
14
i
+
12.1
Re
(
z
)
=
Im
(
z
)
=
Get tutor help
Posted 10 months ago
Question
log
16
1
2
=
\log _{16} \frac{1}{2}=
lo
g
16
2
1
=
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
−
4
sin
(
2
x
−
7
)
+
3
?
y
=
□
\begin{array}{l} y=-4 \sin (2 x-7)+3 ? \\ y=\square \end{array}
y
=
−
4
sin
(
2
x
−
7
)
+
3
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
−
5
cos
(
2
π
x
+
1
)
−
10
?
y
=
□
\begin{array}{l} y=-5 \cos (2 \pi x+1)-10 ? \\ y=\square \end{array}
y
=
−
5
cos
(
2
π
x
+
1
)
−
10
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
sin
(
3
x
+
5
)
?
y
=
□
\begin{array}{l} y=\sin (3 x+5) ? \\ y=\square \end{array}
y
=
sin
(
3
x
+
5
)?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
10
cos
(
6
x
−
1
)
−
4
?
y
=
□
\begin{array}{l} y=10 \cos (6 x-1)-4 ? \\ y=\square \end{array}
y
=
10
cos
(
6
x
−
1
)
−
4
?
y
=
□
Get tutor help
Posted 10 months ago
Question
What is the midline equation of
\newline
y
=
cos
(
2
π
3
x
)
+
2
?
y
=
□
\begin{array}{l} y=\cos \left(\frac{2 \pi}{3} x\right)+2 ? \\ y=\square \end{array}
y
=
cos
(
3
2
π
x
)
+
2
?
y
=
□
Get tutor help
Posted 10 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant