Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

z=3-6i
What are the real and imaginary parts of 
z ?
Choose 1 answer:
(A)

{:[Re(z)=3" and "],[Im(z)=-6]:}
(B)

{:[Re(z)=-6" and "],[Im(z)=3]:}
(c)

{:[Re(z)=3" and "],[Im(z)=-6i]:}
(D)

{:[Re(z)=-6i" and "],[Im(z)=3]:}

z=36i z=3-6 i \newlineWhat are the real and imaginary parts of z z ?\newlineChoose 11 answer:\newline(A)\newlineRe(z)=3 and Im(z)=6 \begin{array}{l} \operatorname{Re}(z)=3 \text { and } \\ \operatorname{Im}(z)=-6 \end{array} \newline(B)\newlineRe(z)=6 and Im(z)=3 \begin{array}{l} \operatorname{Re}(z)=-6 \text { and } \\ \operatorname{Im}(z)=3 \end{array} \newline(C)\newlineRe(z)=3 and Im(z)=6i \begin{array}{l} \operatorname{Re}(z)=3 \text { and } \\ \operatorname{Im}(z)=-6 i \end{array} \newline(D)\newlineRe(z)=6i and Im(z)=3 \begin{array}{l} \operatorname{Re}(z)=-6 i \text { and } \\ \operatorname{Im}(z)=3 \end{array}

Full solution

Q. z=36i z=3-6 i \newlineWhat are the real and imaginary parts of z z ?\newlineChoose 11 answer:\newline(A)\newlineRe(z)=3 and Im(z)=6 \begin{array}{l} \operatorname{Re}(z)=3 \text { and } \\ \operatorname{Im}(z)=-6 \end{array} \newline(B)\newlineRe(z)=6 and Im(z)=3 \begin{array}{l} \operatorname{Re}(z)=-6 \text { and } \\ \operatorname{Im}(z)=3 \end{array} \newline(C)\newlineRe(z)=3 and Im(z)=6i \begin{array}{l} \operatorname{Re}(z)=3 \text { and } \\ \operatorname{Im}(z)=-6 i \end{array} \newline(D)\newlineRe(z)=6i and Im(z)=3 \begin{array}{l} \operatorname{Re}(z)=-6 i \text { and } \\ \operatorname{Im}(z)=3 \end{array}
  1. Identifying the complex number: The complex number zz is given as z=36iz = 3 - 6i. To find the real and imaginary parts of zz, we need to identify the terms without the imaginary unit ii as the real part, and the terms with the imaginary unit ii as the imaginary part.
  2. Finding the real part: The real part of z is the term without the imaginary unit i, which is 33. Therefore, \text{Re}(z) = 33.
  3. Finding the imaginary part: The imaginary part of z is the term with the imaginary unit i, which is 6-6i. However, when we refer to the imaginary part, we only take the coefficient of i, which is 6-6. Therefore, \text{Im}(z) = 6-6.

More problems from Compare linear and exponential growth