Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let m=2x+3.
Which equation is equivalent to (2x+3)^(2)-14 x-21=-6 in terms of m ?
Choose 1 answer:
(A) m^(2)-7m+6=0
(B) m^(2)+7m+6=0
(C) m^(2)+7m-15=0
(D) m^(2)-7m-15=0

Let m=2x+3 m=2 x+3 .\newlineWhich equation is equivalent to (2x+3)214x21=6 (2 x+3)^{2}-14 x-21=-6 in terms of m m ?\newlineChoose 11 answer:\newline(A) m27m+6=0 m^{2}-7 m+6=0 \newline(B) m2+7m+6=0 m^{2}+7 m+6=0 \newline(C) m2+7m15=0 m^{2}+7 m-15=0 \newline(D) m27m15=0 m^{2}-7 m-15=0

Full solution

Q. Let m=2x+3 m=2 x+3 .\newlineWhich equation is equivalent to (2x+3)214x21=6 (2 x+3)^{2}-14 x-21=-6 in terms of m m ?\newlineChoose 11 answer:\newline(A) m27m+6=0 m^{2}-7 m+6=0 \newline(B) m2+7m+6=0 m^{2}+7 m+6=0 \newline(C) m2+7m15=0 m^{2}+7 m-15=0 \newline(D) m27m15=0 m^{2}-7 m-15=0
  1. Given substitution equation: We are given the substitution m=2x+3m = 2x + 3. We need to find an equivalent equation for the expression (2x+3)214x21=6(2x+3)^{2} - 14x - 21 = -6 in terms of mm.
  2. Expand and simplify expression: First, let's expand the expression (2x+3)214x21(2x+3)^{2} - 14x - 21 and simplify it.\newline(2x+3)214x21=(2x+3)(2x+3)14x21(2x+3)^{2} - 14x - 21 = (2x+3)\cdot(2x+3) - 14x - 21\newline=4x2+6x+6x+914x21= 4x^2 + 6x + 6x + 9 - 14x - 21\newline=4x2+12x14x+921= 4x^2 + 12x - 14x + 9 - 21\newline=4x22x12= 4x^2 - 2x - 12
  3. Equation simplification: Now, we equate the simplified expression to 6-6, as given in the original equation.\newline4x22x12=64x^2 - 2x - 12 = -6
  4. Isolate terms and replace: To find the equivalent equation in terms of mm, we need to isolate the terms with xx and replace them with mm. Let's add 66 to both sides of the equation to simplify it further.\newline4x22x12+6=6+64x^2 - 2x - 12 + 6 = -6 + 6\newline4x22x6=04x^2 - 2x - 6 = 0
  5. Substitute xx in terms of mm: Now, we can substitute mm for 2x+32x + 3 in the equation.\newlineSince m=2x+3m = 2x + 3, we can solve for xx in terms of mm:\newline2x=m32x = m - 3\newlinex=m32x = \frac{m - 3}{2}
  6. Simplify equation with substitution: We substitute xx in the equation 4x22x6=04x^2 - 2x - 6 = 0 with the expression we found in terms of mm.4(m32)22(m32)6=04\left(\frac{m - 3}{2}\right)^2 - 2\left(\frac{m - 3}{2}\right) - 6 = 0
  7. Combine like terms: Now, we simplify the equation by squaring the term and multiplying through by 44.4×(m26m+94)(2m6)6=04\times\left(\frac{m^2 - 6m + 9}{4}\right) - (2m - 6) - 6 = 0(m26m+9)(2m6)6=0\left(m^2 - 6m + 9\right) - (2m - 6) - 6 = 0
  8. Combine like terms: Now, we simplify the equation by squaring the term and multiplying through by 44.\newline4×(m26m+94)(2m6)6=04\times\left(\frac{m^2 - 6m + 9}{4}\right) - (2m - 6) - 6 = 0\newline(m26m+9)(2m6)6=0(m^2 - 6m + 9) - (2m - 6) - 6 = 0We continue to simplify the equation by combining like terms.\newlinem26m+92m+66=0m^2 - 6m + 9 - 2m + 6 - 6 = 0\newlinem28m+9=0m^2 - 8m + 9 = 0

More problems from Find equations of tangent lines using limits