Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y=xa^(x)=>a^(x-1)= ?
A) 
(y)/(x-1)
B) 
(1)/(x(a-1))
C) 
(y-1)/(x-1)
D) 
(y)/(ax)
E) 
(y-x)/(x)

3737. y=xaxax1= y=x a^{x} \Rightarrow a^{x-1}= ?\newlineA) yx1 \frac{y}{x-1} \newlineB) 1x(a1) \frac{1}{x(a-1)} \newlineC) y1x1 \frac{y-1}{x-1} \newlineD) yax \frac{y}{a x} \newlineE) yxx \frac{y-x}{x}

Full solution

Q. 3737. y=xaxax1= y=x a^{x} \Rightarrow a^{x-1}= ?\newlineA) yx1 \frac{y}{x-1} \newlineB) 1x(a1) \frac{1}{x(a-1)} \newlineC) y1x1 \frac{y-1}{x-1} \newlineD) yax \frac{y}{a x} \newlineE) yxx \frac{y-x}{x}
  1. Isolate a^x: We are given the equation y=xax y = x \cdot a^x . We want to express a(x1) a^{(x-1)} in terms of y y and x x . To do this, we can start by isolating ax a^x on one side of the equation.\newlineax=yx a^x = \frac{y}{x}
  2. Express a^(x1-1): Next, we need to express a(x1) a^{(x-1)} . We can use the property of exponents that states a(x1)=axa a^{(x-1)} = \frac{a^x}{a} .\newlineSo, we substitute ax a^x with yx \frac{y}{x} from the previous step.\newlinea(x1)=yxa a^{(x-1)} = \frac{\frac{y}{x}}{a}
  3. Simplify the Expression: Now, we simplify the expression by dividing yx \frac{y}{x} by a a .\newlinea(x1)=yax a^{(x-1)} = \frac{y}{ax}

More problems from Composition of linear and quadratic functions: find an equation